Abstract. An epizootic infection was observed in a colony of 80 New World monkeys consisting of various species including a group of marmosets and Saguinus species. During the summer and autumn of 2002, 30 animals died of unknown diseases. Six animals were sent to the German Primate Center for investigation of the cause of death. A complete pathologic and histologic investigation was carried out. The animals exhibited erosive-ulcerative lesions of the oral mucous membranes. Advanced stages of the disease were characterised by hemorrhagic lesions on the skin distributed randomly over the body, but principally on the face, scrotal region, soles, and palms. Electron microscopy revealed virus particles with orthopox-like morphology within intracytoplasmic inclusions in epithelial cells. The DNA samples from various tissues were analyzed by use of a set of orthopox virus-specific, real-time polymerase chain reaction assays. Amplification products were sequenced to define the virus more precisely. Sequencing confirmed the presence of an orthopox virus. Sequence data indicated that all six animals were infected with the same virus. Propagation of the virus on Vero cells resulted in a rapidly progressive cytopathogenic effect. Preliminary phylogenetic analyses of two genes revealed closest homology to cowpox viruses. The origin of this poxvirus outbreak remains unexplained, and the strain and genus of the virus need to be determined in detail.
Vaccination with exogenous antigens such as recombinant viral proteins, immunodeficiency virus-derived whole inactivated virus particles, or virus-like particles (VLP) has generally failed to provide sufficient protection in animal models for AIDS. Pseudotyping VLPs with the vesicular stomatitis virus G protein (VSV-G), which is known to mediate entry into dendritic cells, might allow more efficient stimulation of immune responses. Therefore, we pseudotyped noninfectious immunodeficiency virus-like particles with VSV-G and carried out a preliminary screen of their immunogenicity and vaccination efficacy. Incorporation of VSV-G into HIV-1 VLPs led to hundred-fold higher antibody titers to HIV-1 Gag and enhancement of T cell responses in mice. Repeated vaccination of rhesus monkeys for 65 weeks with VSV-G pseudotyped simian immunodeficiency virus (SIV)-like particles (VLP[G]) provided initial evidence for efficient suppression of viral load after mucosal challenge with the SIVmac239 virus. Challenge of monkeys after a 28 week vaccination regimen with VLP[G] led to a reduction in peak viremia, but persistent suppression of viral load was not achieved. Due to limitations in the number of animals available for this study, improved efficacy of VSV-G pseudotyped VLPs in nonhuman primates could not be demonstrated. However, mouse experiments revealed that pseudotyping of VLPs with fusion-competent VSV-G clearly improves their immunogenicity. Additional strategies, particularly adjuvants, should be considered to provide greater protection against a challenge with pathogenic immunodeficiency virus.
Abstract. Tularemia is a highly contagious infectious zoonosis, transmissible by inoculation, ingestion, or inhalation of the infectious agent Francisella tularensis. The disease is perpetuated by infected rodents, blood-sucking arthropods, and by contaminated water. Therefore, nonhuman primates housed outdoors may be at risk for exposure. An epizootic of F. tularensis occurred in an indoor/ outdoor-housed group of cynomolgus monkeys (Macaca fascicularis) at the German Primate Center. Tularemia was diagnosed in 18 out of 35 animals within a period of 2 years. Six animals died with unspecific clinical symptoms; 12 animals developed seroconversion and were still alive. Pathologic findings were similar in all monkeys that died and resembled the clinical picture of the human disease, including an ulceroglandular syndrome with local lymphadenopathy, gingivostomatitis, and systemic spread, with manifestations such as subacute necrotizing hepatitis, granulomatous splenitis, and pneumonia. Tularemia was diagnosed by culture, real-time polymerase chain reaction, and ELISA techniques. This is the largest outbreak in nonhuman primates and the first report of tularemia in cynomolgus monkeys. An overview of the recent literature about tularemia in nonhuman primates is given.
In a baboon group housed at the German Primate Center one animal became conspicuous with signs of massive abdominal pain in the upper gastric region. After clinical investigation an acute bloat-syndrome was suspected as cause of the animals' sickness. Symptomatic therapy was started but the animal died within a few hours. At necropsy a large piece of wood was found within the right kidney and liver. Prior to this, the foreign body passed the gastrointestinal tract and perforated the proximal colon. A clinico-pathologic description of this uncommon spontaneous foreign body disease is given. The significance of injuries related to environmental enrichment is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.