We derive a low-scaling G 0 W 0 algorithm for molecules using pair atomic density fitting (PADF) and an imaginary time representation of the Green’s function and describe its implementation in the Slater type orbital (STO)-based Amsterdam density functional (ADF) electronic structure code. We demonstrate the scalability of our algorithm on a series of water clusters with up to 432 atoms and 7776 basis functions and observe asymptotic quadratic scaling with realistic threshold qualities controlling distance effects and basis sets of triple-ζ (TZ) plus double polarization quality. Also owing to a very small prefactor, a G 0 W 0 calculation for the largest of these clusters takes only 240 CPU hours with these settings. We assess the accuracy of our algorithm for HOMO and LUMO energies in the GW100 database. With errors of 0.24 eV for HOMO energies on the quadruple-ζ level, our implementation is less accurate than canonical all-electron implementations using the larger def2-QZVP GTO-type basis set. Apart from basis set errors, this is related to the well-known shortcomings of the GW space-time method using analytical continuation techniques as well as to numerical issues of the PADF approach of accurately representing diffuse atomic orbital (AO) products. We speculate that these difficulties might be overcome by using optimized auxiliary fit sets with more diffuse functions of higher angular momenta. Despite these shortcomings, for subsets of medium and large molecules from the GW5000 database, the error of our approach using basis sets of TZ and augmented double-ζ (DZ) quality is decreasing with system size. On the augmented DZ level, we reproduce canonical, complete basis set limit extrapolated reference values with an accuracy of 80 meV on average for a set of 20 large organic molecules. We anticipate our algorithm, in its current form, to be very useful in the study of single-particle properties of large organic systems such as chromophores and acceptor molecules.
We report a production level implementation of pair atomic resolution of the identity (PARI) based second-order Møller−Plesset perturbation theory (MP2) in the Slater type orbital (STO) based Amsterdam Density Functional (ADF) code. As demonstrated by systematic benchmarks, dimerization and isomerization energies obtained with our code using STO basis sets of triple-ζ-quality show mean absolute deviations from Gaussian type orbital, canonical, basis set limit extrapolated, global density fitting (DF)-MP2 results of less than 1 kcal/mol. Furthermore, we introduce a quadratic scaling atomic orbital based spin-oppositescaled (SOS)-MP2 approach with a very small prefactor. Due to a worst-case scaling of N ( ) 3 , our implementation is very fast already for small systems and shows an exceptionally early crossover to canonical SOS-PARI-MP2. We report computational wall time results for linear as well as for realistic three-dimensional molecules and show that triple-ζ quality calculations on molecules of several hundreds of atoms are only a matter of a few hours on a single compute node, the bottleneck of the computations being the SCF rather than the post-SCF energy correction.
The compositional analyses of InxGa1−x/GaAs (001) island structures grown by molecular beam epitaxy at a substrate temperature of 560 °C with nominal In contents of x=60% and 100% are presented on the basis of high resolution transmission electron microscopy micrographs. The linear dependence of the lattice parameter on the In content (Vegard’s law) is exploited to quantitatively derive composition profiles on an atomic scale by measuring local lattice parameters and displacements. The relaxation of the thin transmission electron microscopy specimen is taken into account by the accurate thickness determination using the quantitative analysis of the information from transmission electron micrographs procedure. The final evaluation step consists of finite element modeling with the appropriate sample geometry, where the In distribution is chosen to obtain the best fit between experimental and simulated displacements. The observed In content is significantly smaller than the nominal In concentration which is due to segregation of In and diffusion of Ga from the GaAs buffer into the island during the growth. The measured mean In concentration of the islands with a nominal In content of 60% (100%) is 24% (45%).
We calculate complete basis set (CBS) limitextrapolated ionization potentials (IPs) and electron affinities (EA) with Slater-type basis sets for the molecules in the GW100 database. To this end, we present two new Slater-type orbital (STO) basis sets of triple-(TZ) and quadruple-ζ (QZ) quality, whose polarization is adequate for correlated-electron methods and which contain extra diffuse functions to be able to correctly calculate EAs of molecules with a positive lowest unoccupied molecular orbital (LUMO). We demonstrate that going from TZ to QZ quality consistently reduces the basis set error of our computed IPs and EAs, and we conclude that a good estimate of these quantities at the CBS limit can be obtained by extrapolation. With mean absolute deviations (MAD) from 70 to 85 meV, our CBS limit-extrapolated IP are in good agreement with results from FHI-AIMS, TURBOMOLE, VASP, and WEST, while they differ by more than 130 meV on average from nanoGW. With a MAD of 160 meV, our EA are also in good agreement with the WEST code. Especially for systems with positive LUMOs, the agreement is excellent. With respect to other codes, the STO-type basis sets generally underestimate EAs of small molecules with strongly bound LUMOs. With 62 meV for IPs and 93 meV for EAs, we find much better agreement with CBS limit-extrapolated results from FHI-AIMS for a set of 250 medium to large organic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.