Abstract. We consider a SIR age-structured model with immigration of infectives in all epidemiological compartments; the population is supposed in demographic equilibrium between below-replacement fertility and immigration; the spread of the infection occurs through a general age-dependent kernel. We analyse the equations for steady states; because of immigration of infectives a steady state with a positive density of infectives always exists; however, a quasi-threshold theorem is proved, in the sense that, below the threshold, the density of infectives is close to 0, while it is away from 0, above the threshold; furthermore, conditions that guarantee uniqueness of steady states are obtained. Finally, we present some numerical examples, inspired to the Italian demographic situation, that illustrate the threshold-like behaviour, and other features of the stationary solutions and of the transient.
SIR age-structured models are very often used as a basic model of epidemic spread. Yet, their behaviour, under generic assumptions on contact rates between different age classes, is not completely known, and, in the most detailed analysis so far, Inaba (1990) was able to prove uniqueness of the endemic equilibrium only under a rather restrictive condition. Here, we show an example in the form of a 3x3 contact matrix in which multiple non-trivial steady states exist. This instance of non-uniqueness of positive equilibria differs from most existing ones for epidemic models, since it arises not from a backward transcritical bifurcation at the disease free equilibrium, but through two saddle-node bifurcations of the positive equilibrium. The dynamical behaviour of the model is analysed numerically around the range where multiple endemic equilibria exist; many other features are shown to occur, from coexistence of multiple attractive periodic solutions, some with extremely long period, to quasi-periodic and chaotic attractors. It is also shown that, if the contact rates are in the form of a 2x2 WAIFW matrix, uniqueness of non-trivial steady states always holds, so that 3 is the minimum dimension of the contact matrix to allow for multiple endemic equilibria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.