Nitric oxide (NO) fulfils important functions during pregnancy and has a role in implantation, decidualization, vasodilatation and myometrial relaxation. However, at high concentrations, such as those that are produced in sepsis, NO has toxic effects as it is a free radical. The aim of this study was to characterize uterine and decidual NO production in lipopolysaccharide (LPS)-induced embryonic resorption in mice and to determine which isoforms of nitric oxide synthase (NOS) take part. LPS produced 100% embryonic resorption at 24 h, with complete fetus expulsions at 48 h. Decidual and uterine NO production were increased by LPS, with maximum production at 6 h. This increase was due to the induction of expression of inducible nitric oxide synthase (iNOS) isoform in the decidua and uterus, and neuronal nitric oxide synthase (nNOS) isoform in the decidua, as detected by western blot analysis and immunohistochemistry. LPS increased iNOS expression in decidual and myometrial cells and increased nNOS expression in decidual cells. In addition, LPS caused fibrinolysis and infiltration of mesometrial decidua by macrophages positive for iNOS and CD14 (LPS receptor). Endothelial nitric oxide synthase (eNOS) was found in decidual and uterine arteries but LPS did not modify its expression. LPS induced CD14 expression in endometrial glands, and this could have amplified the inflammatory response. Aminoguanidine, an inhibitor of iNOS activity, totally reversed the LPS-induced embryonic resorption. This result could be explained by an inhibition of the increase in NO production but also by an inhibition of the cellular infiltration and fibrinolysis. These results show that NO fulfils a fundamental role in LPS-induced embryonic resorption.
BACKGROUND AND PURPOSEMaternal infections are one of the main causes of adverse developmental outcomes including embryonic resorption and preterm labour. In this study a mouse model of inflammation-associated preterm delivery was developed, and used to study the relationship between nitric oxide (NO) and prostaglandins (PGs). EXPERIMENTAL APPROACHThe murine model of preterm labour was achieved by assaying different doses of bacterial lipopolysaccharides (LPS). Once established, it was used to analyse uterine levels of prostaglandins E2 and F2a (by radioimmunoassay), cyclooxygenases (COX) and NOS proteins (by Western blot) and NO synthase (NOS) activity. Effects of inhibitors of COX and NOS on LPS-induced preterm labour were also studied. In vitro assays with a nitric oxide donor (SNAP) were performed to analyse the modulation of prostaglandin production by NO. KEY RESULTSLipopolysaccharide increased uterine NO and PG synthesis and induced preterm delivery. Co-administration of meloxicam, a cyclooxygenase-2 inhibitor, or aminoguanidine, an inducible NOS inhibitor, prevented LPS-induced preterm delivery and blocked the increase in PGs and NO. Notably, the levels of NO were found to determine its effect on PG synthesis; low concentrations of NO reduced PG synthesis whereas high concentrations augmented them. CONCLUSIONS AND IMPLICATIONSAn infection-associated model of preterm labour showed that preterm delivery can be prevented by decreasing PG or NO production. NO was found to have a dual effect on PG synthesis depending on its concentration. These data contribute to the understanding of the interaction between NO and PGs in pregnancy and parturition, and could help to improve neonatal outcomes. Abbreviations
In women, the association between chronic marijuana smoking and early miscarriage has long been known. Anandamide, a major endocannabinoid, mimics some of the psychotropic, hypnotic and analgesic effects of Delta(9)-tetrahydrocannabinol, the psychoactive component of marijuana. The uterus contains the highest concentrations of anandamide yet discovered in mammalian tissues and this suggests that it might play a role in reproduction. The production of small amounts of nitric oxide (NO) regulates various physiological events including implantation and myometrial relaxation, but in an inflammatory setting such as sepsis, NO has toxic effects as it is a free radical. The results presented in this study indicate that anandamide modulates NO production induced by lipopolysaccharide (LPS) in an in-vitro murine model. It was shown that LPS-induced NO synthesis and tissue damage were mediated by anandamide, as a cannabinoid receptor type I antagonist could block the effect of LPS (P < 0.001). This endotoxin inhibited anandamide uterine degradation (P < 0.05) and increased the expression of one of its synthesizing enzymes (P < 0.05). Contrary to the known anti-inflammatory and protective effects, in this model anandamide seems to act as a pro-inflammatory molecule modulating the production of NO induced by LPS. This proinflammatory effect of anandamide may be implicated in pathological reproductive events such as septic abortion.
The effect of the inhibition of nitric oxide synthase (NOS) on ovum transport and oviductal motility in rats was investigated. Three different NOS inhibitors were injected into the ovarian bursa at oestrus or day 3 of pregnancy. Oviducts and uteri were flushed 24 h later and the presence of ova was recorded. In oestrous and pregnant rats, treatment resulted in accelerated egg transport, as shown by a decrease in the number of ova present in the oviducts. In cyclic rats, intrabursal injection of 1 mg kg-1 of either N-monomethyl-L-arginine (L-NMMA) or N omega nitro-L-arginine methyl ester (L-NAME) elicited a 30% reduction in the number of ova present in the oviducts, whereas in pregnant animals, the same dose of L-NMMA produced a reduction of 40%. Simultaneous administration of the NO donor spermine NONOate (5 mg kg-1) completely reversed the effect of L-NMMA. Tubal motility was assessed by microsphere displacement analysis within the oviduct. Surrogate ova were transferred to the oviductal lumen at oestrus and 24 h later the effect of intraoviductal injection of 1 microgram L-NMMA or vehicle was assessed. The microspheres in the isthmus showed an oscillating motion, and periods in which movement was not detectable. However, L-NMMA treatment produced a 3.6-fold increase in the maximum instant velocities and a significant reduction in the resting periods of the microspheres compared with the control group (P < 0.001). These results provide evidence that NO inhibition increases tubal motility that results in accelerated ovum transport, and indicate that NO could act as a paracrine signal between different layers of the oviductal wall, providing a role for endogenous NO in regulation of tubal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.