This paper presents vehicle models and test flight results for an autonomous fixed-wing airplane that is designed to take-off, hover, transition to and from level-flight modes, and perch on a vertical landing platform in a highly space constrained environment. By enabling a fixed-wing UAV to achieve these feats, the speed and range of a fixed-wing aircraft in level flight are complimented by hover capabilities that were typically limited to rotorcraft. Flight and perch landing results are presented. This capability significantly eases support and maintenance of the vehicle. All of the flights presented in this paper are performed using the MIT Real-time Autonomous Vehicle indoor test ENvironment (RAVEN).2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.