We address the statistics of continuous weak linear measurement on a few-state quantum system that is subject to a conditioned quantum evolution. For a conditioned evolution, both the initial and final states of the system are fixed: the latter is achieved by the postselection in the end of the evolution. The statistics may drastically differ from the nonconditioned case, and the interference between initial and final states can be observed in the probability distributions of measurement outcomes as well as in the average values exceeding the conventional range of nonconditioned averages. We develop a proper formalism to compute the distributions of measurement outcomes, and evaluate and discuss the distributions in experimentally relevant setups. We demonstrate the manifestations of the interference between initial and final states in various regimes. We consider analytically simple examples of nontrivial probability distributions. We reveal peaks (or dips) at half-quantized values of the measurement outputs. We discuss in detail the case of zero overlap between initial and final states demonstrating anomalously big average outputs and sudden jump in time-integrated output. We present and discuss the numerical evaluation of the probability distribution aiming at extending the analytical results and describing a realistic experimental situation of a qubit in the regime of resonant fluorescence.
In this paper, we establish a general theoretical framework for the description of continuous quantum measurements and the statistics of the results of such measurements. The framework concerns the measurement of an arbitrary quantum system with arbitrary number of detectors under realistic assumption of instant detector reactions and white noise sources. We attend various approaches to the problem showing their equivalence. The approaches include the full counting statistics (FCS) evolution equation a for pseudo-density matrix, the drift-diffusion equation for a density matrix in the space of integrated outputs, and discrete stochastic updates. We provide the derivation of the underlying equations from a microscopic approach based on full counting statistics method, a phenomenological approach based on Lindblad construction, and interaction with auxiliary quantum systems representing the detectors. We establish the necessary conditions on the phenomenological susceptibilities and noises that guarantee the unambiguous interpretation of the measurement results and the positivity of the density matrix. Our results can be easily extended to describe various quantum feedback schemes where the manipulation decision is based on the values of detector outputs.
We address the statistics of a simultaneous continuous weak linear measurement of two noncommuting variables on a few-state quantum system subject to a postselected evolution. The results of both postselected quantum measurement and simultaneous monitoring of two noncommuting variables differ drastically from the results of either classical or quantum projective measurement. We explore the peculiarities arising from the combination of the two. We concentrate on the distribution function of two measurement outcomes integrated over a time interval. We formulate a proper formalism for the evaluation of such distribution, and further compute and discuss the resulting statistics for idealized and experimentally relevant setups. We demonstrate the visibility and manifestations of the interference between initial and final states in the statistics of measurement outcomes for both variables in various regimes. We analytically predict the peculiarities at the circle O 2 1 + O 2 2 = 1 in the distribution of measurement outcomes O 1,2 in the limit of short measurement times and confirm this by numerical calculation at longer measurement times. We demonstrate analytically the anomalously large values of the time-integrated output cumulants in the limit of short measurement times and zero overlap between initial and final states, and give the detailed distributions for this case. We term this situation sudden jump. We present the numerical evaluation of the probability distributions for experimentally relevant parameters in several regimes and demonstrate that interference effects in the postselected measurement can be accurately predicted even if they are small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.