With an aging population, skeletal fractures are increasing in incidence, including the typical closed and the less common open fractures in normal bone, as well as fragility fractures in patients with osteoporosis. For the older age group, there is an urgent unmet need to induce predictable bone formation as well as improve implant fixation in situations such as hip joint replacement. Using a murine model of slow-healing fractures, we have previously shown that coverage of the fracture with muscle accelerated fracture healing and increased union strength. Here, we show that cells from muscle harvested after 3 d of exposure to an adjacent fracture differentiate into osteoblasts and form bone nodules in vitro. The osteogenic potential of these cells exceeds that of adipose and skinderived stromal cells and is equivalent to bone marrow stromal cells. Supernatants from human fractured tibial bone fragments promote osteogenesis and migration of muscle-derived stromal cells (MDSC) in vitro. The main factor responsible for this is TNF-α, which promotes first MDSC migration, then osteogenic differentiation at low concentrations. However, TNF-α is inhibitory at high concentrations. In our murine model, addition of TNF-α at 1 ng/mL at the fracture site accelerated healing. These data indicate that manipulating the local inflammatory environment to recruit, then differentiate adjacent MDSC, may be a simple yet effective way to enhance bone formation and accelerate fracture repair. Our findings are based on a combination of human specimens and an in vivo murine model and may, therefore, translate to clinical care.
ObjectiveTo investigate whether molecules found to be up‐regulated within hours of surgical joint destabilization in the mouse are also elevated in the analogous human setting of acute knee injury, how this molecular response varies between individuals, and whether it is related to patient‐reported outcomes in the 3 months after injury.MethodsSeven candidate molecules were analyzed in blood and synovial fluid (SF) from 150 participants with recent structural knee injury at baseline (<8 weeks from injury) and in blood at 14 days and 3 months following baseline. Knee Injury and Osteoarthritis Outcome Score 4 (KOOS4) was obtained at baseline and 3 months. Patient and control samples were compared using Meso Scale Discovery platform assays or enzyme‐linked immunosorbent assay.ResultsSix of the 7 molecules were significantly elevated in human SF immediately after injury: interleukin‐6 (IL‐6), monocyte chemotactic protein 1, matrix metalloproteinase 3 (MMP‐3), tissue inhibitor of metalloproteinases 1 (TIMP‐1), activin A, and tumor necrosis factor–stimulated gene 6 (TSG‐6). There was low‐to‐moderate correlation with blood measurements. Three of the 6 molecules were significantly associated with baseline KOOS4 (those with higher SF IL‐6, TIMP‐1, or TSG‐6 had lower KOOS4). These 3 molecules, MMP‐3, and activin A were all significantly associated with greater improvement in KOOS4 over 3 months, after adjustment for other relevant factors. Of these, IL‐6 alone significantly accounted for the molecular contribution to baseline KOOS4 and change in KOOS4 over 3 months.ConclusionOur findings validate relevant human biomarkers of tissue injury identified in a mouse model. Analysis of SF rather than blood more accurately reflects this response. The response is associated with patient‐reported outcomes over this early period, with SF IL‐6 acting as a single representative marker. Longitudinal outcomes will determine if these molecules are biomarkers of subsequent disease risk.
The mechanism by which trauma initiates healing remains unclear. Precise understanding of these events may define interventions for accelerating healing that could be translated to the clinical arena. We previously reported that addition of low-dose recombinant human TNF (rhTNF) at the fracture site augmented fracture repair in a murine tibial fracture model. Here, we show that local rhTNF treatment is only effective when administered within 24 h of injury, when neutrophils are the major inflammatory cell infiltrate. Systemic administration of anti-TNF impaired fracture healing. Addition of rhTNF enhanced neutrophil recruitment and promoted recruitment of monocytes through CCL2 production. Conversely, depletion of neutrophils or inhibition of the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility, or osteoporotic, fractures represent a major medical problem as they are associated with permanent disability and premature death. Using a murine model of fragility fractures, we found that local rhTNF treatment improved fracture healing during the early phase of repair. If translated clinically, this promotion of fracture healing would reduce the morbidity and mortality associated with delayed patient mobilization.
Glucocorticoids are widely used as therapeutic agents to treat immune-mediated diseases in humans because of their anti-inflammatory and immunosuppressive effects. However, glucocorticoids have various adverse effects, in particular rapid and pronounced bone loss associated with fractures in glucocorticoid-induced osteoporosis, a common form of secondary osteoporosis. In zebrafish, which are increasingly used to study processes of bone regeneration and disease, glucocorticoids show detrimental effects on bone tissue; however, the underlying cellular mechanisms are incompletely understood. Here, we show that treatment with the glucocorticoid prednisolone impacts on the number, activity and differentiation of osteoblasts, osteoclasts, and immune cells during ontogenetic growth, homeostasis, and regeneration of zebrafish bone. Macrophage numbers are reduced in both larval and adult tissues, correlating with decreased generation of myelomonocytes and enhanced apoptosis of these cells. In contrast, osteoblasts fail to proliferate, show decreased activity, and undergo incomplete differentiation. In addition, prednisolone treatment mitigates the number and recruitment of osteoclasts to sites of bone regeneration in adult fish. In combination, these effects delay bone growth and impair bone regeneration. Our study demonstrates the many-faceted effects of glucocorticoids in non-mammalian vertebrates and helps to further establish the zebrafish as a model to study glucocorticoid-induced osteoporosis. © 2017 American Society for Bone and Mineral Research.
Heterozygous germline gain-of-function mutations of G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in autosomal dominant hypocalcemia type 2 (ADH2). ADH2 may cause symptomatic hypocalcemia with low circulating parathyroid hormone (PTH) concentrations. Effective therapies for ADH2 are currently not available, and a mouse model for ADH2 would help in assessment of potential therapies. We hypothesized that a previously reported dark skin mouse mutant (Dsk7) — which has a germline hypermorphic Gα11 mutation, Ile62Val — may be a model for ADH2 and allow evaluation of calcilytics, which are CaSR negative allosteric modulators, as a targeted therapy for this disorder. Mutant Dsk7/+ and Dsk7/Dsk7 mice were shown to have hypocalcemia and reduced plasma PTH concentrations, similar to ADH2 patients. In vitro studies showed the mutant Val62 Gα11 to upregulate CaSR-mediated intracellular calcium and MAPK signaling, consistent with a gain of function. Treatment with NPS-2143, a calcilytic compound, normalized these signaling responses. In vivo, NPS-2143 induced a rapid and marked rise in plasma PTH and calcium concentrations in Dsk7/Dsk7 and Dsk7/+ mice, which became normocalcemic. Thus, these studies have established Dsk7 mice, which harbor a germline gain-of-function Gα11 mutation, as a model for ADH2 and have demonstrated calcilytics as a potential targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.