Theory, design, realization and measurements of an X-band isoflux circularly polarized antenna for LEO satellite platforms are presented. The antenna is based on a metasurface composed by a dense texture of sub-wavelength metal patches on a grounded dielectric slab, excited by a surface wave generated by a coplanar feeder. The antenna is extremely flat (1.57 mm) and light (less than 1Kg) and represents a competitive solution for space-to-ground data link applications.Index Terms-Leaky wave antennas, surface impedance, holographic antennas.
In this paper a procedure is presented, allowing the automatic design of circular polarized radial line slot antennas, with either pencil or shaped beam patterns. The antenna slot layout is refined by an optimization scheme based on the physical picture behind the working mechanism of the array. The validity of the approach has been proved by designing very efficient pencil beam antennas, either with maximum directivity or with controlled side lobe levels, and a shaped isoflux beam antenna.
Index Terms-Antennaarrays, antenna optimization, moment methods, Radial Line Slot Array (RLSA) d λ apart, making an angle of 45±° with respect to the radial direction ( Fig. 1) [7]. Since the two slots in the
Passive imaging cameras at millimeter and submillimeter wavelengths are currently entering a new era with the development of large format arrays of direct detectors. Several of these arrays are being developed with bare absorbing meshes without any antenna coupling (lens or horn) structures. The design of such arrays is typically done resorting to geometrical considerations or basic broadside plane wave incidence analysis. This paper presents a spectral technique for the analysis of such focal plane arrays in reception using Fourier Optics, which is valid also for moderately skewed incident angles. The analysis constitutes a step improvement with respect to previously used methods by providing an accurate and efficient way to estimate the point-source angular response and the throughput from a distributed incoherent source of an absorbing mesh in the focal plane of a quasi-optical component (e.g. a parabolic reflector or lens). The proposed technique is validated with full-wave simulations. After presenting the analysis, the paper compares the performance of arrays of bare absorber in the focal plane of a quasi-optical component to those of corresponding antenna based arrays. It is found that absorbers lead to a comparable trade-off, in terms of spill-over and focusing efficiency, only for very tight samplings. For larger samplings, the focusing efficiency of absorbers is significantly lower than the one for antennas.
The paper discusses the possibility of generating a pseudo-Bessel beam, with a propagation distance of several hundreds of wavelengths in microwave and millimeter frequency band, by using a radial line slot array (RLSA). A specific application for non-contact microwave detection of buried mines has been considered as test case. The design benefits of a holographic approach to assure the required aperture field distribution and makes use of an ad hoc optimization tool to control the antenna slot layout. The predicted and measured antenna behaviors show that high efficiency and polarization purity can be obtained by such a compact and flat antenna, achieving at the same time both manufacturing and setup simplicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.