The Skarfjell oil and gas discovery, situated 50 km north of the Troll Field in the NE North Sea, was discovered by well 35/9-7 and was appraised by three additional wells operated by Wintershall, in the period 2012–14.The Skarfjell discovery is an example of a combined structural/stratigraphic trap. The trap formed along the northern edge of a deep WNW–ESE-trending submarine canyon, which was created by Volgian erosion of intra-Heather, Oxfordian-aged sandstones and then infilled with Draupne Formation shales. This mud-filled canyon forms the top and side seal, with the bottom seal provided by Heather shales. The reservoir comprises mid-Oxfordian deep-water turbidites and sediment gravity flows, which formed in response to tectonic hinterland uplift and erosion of the basin margin, 10–20 km to the east.The Skarfjell discovery contains light oil and gas, and may be subdivided into Skarfjell West, in which the main oil reservoir and gas cap have known contacts, and Skarfjell Southeast, which comprises thinner oil and gas reservoirs with slightly lower pressure and unknown hydrocarbon contacts.The Upper Jurassic Draupne and Heather formations are excellent source rocks in the study area. They have generated large volumes of oil and gas reservoired in fields, and discoveries for which the dominant source rock and its maturity have been established by oil to source rock correlation and geochemical biomarker analysis. The Skarfjell fluids were expelled from mid-mature oil source rocks of mixed Heather and Draupne Formation origin.The recoverable resources are estimated at between 9 and 16 million standard cubic metres (Sm3) of recoverable oil and condensate, and 4–6 billion Sm3 of recoverable gas. The Skarfjell discovery is currently in the pre-development phase and is expected to come on stream in 2021.
Faults play an important role in reservoir compartmentalization and can have a significant impact on recoverable volumes. A recent petroleum discovery in the Norwegian offshore sector, with an Upper Jurassic reservoir, is currently in the development planning phase. The reservoir is divided into several compartments by syndepositional faults that have not been reactivated and do not offset the petroleum-bearing sandstones completely. A comprehensive fault analysis has been conducted from core to seismic scale to assess the likely influence of faults on the production performance and recoverable volumes. The permeability of the small-scale faults from the core were analysed at high confining pressures using formation-compatible brines. These permeability measurements provide important calibration points for the fault property assessment, which was used to calculate transmissibility multipliers (TM) that were incorporated into the dynamic reservoir simulation model in order to account for the impact of faults on fluid flow. Dynamic simulation results reveal a range of more than 20% for recoverable volumes, depending on the fault property case applied and for a base case producer–injector well pattern. Fault properties are one of the key parameters that influence the range of cumulative recoverable oil volumes and the recovery efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.