The adsorbate structure of the first layer acetylene on the NaCl(100) single-crystal surface is investigated using polarization infrared spectroscopy in combination with low-energy electron diffraction (LEED) experiments, and potential calculations on the basis of pair potentials. In agreement with a previous study, a triplet of infrared absorptions in the region of the asymmetric stretch vibration of C(2)H(2) was observed and assigned to an adsorbate phase with (3 square root 2 x square root 2)R45 degrees translational symmetry determined in the LEED experiment. The polarization dependence of the infrared spectra is consistent with a parallel orientation of the molecules with respect to the surface. The number of molecules per unit cell is four to six as determined by photometric considerations. Total energy minimizations support a new structure model which contains five inequivalent molecules per unit cell in a herringbone arrangement. The application of a vibrational exciton approach demonstrates that this new structure model can reproduce the triplet spectrum observed in the infrared experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.