A large amount of work world-wide has been directed towards obtaining an understanding of the fundamental characteristics of porous Si. Much progress has been made following the demonstration in 1990 that highly porous material could emit very efficient visible photoluminescence at room temperature. Since that time, all features of the structural, optical and electronic properties of the material have been subjected to in-depth scrutiny. It is the purpose of the present review to survey the work which has been carried out and to detail the level of understanding which has been attained. The key importance of crystalline Si nanostructures in determining the behaviour of porous Si is highlighted. The fabrication of solid-state electroluminescent devices is a prominent goal of many studies and the impressive progress in this area is described.
A systematic study is presented of the effects of silicon dopant type, resistivity, current density, and hydrofluoric acid concentration on the formation and properties of porous silicon. Cross-section transmission electron microscopy revealed the presence of two distinct microstructures. The structure formed is determined by the doping level with the transition occurring near degeneracy. A model of the anodisation process is presented which is based on the semiconducting properties of the material and which explains the formation of the two different types of porous structure observed.
Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers J. Appl. Phys. 98, 023514 (2005); 10.1063/1.1978991 Ductile relaxation in cracked metal-organic chemical-vapor-deposition-grown AlGaN films on GaN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.