Addressing the global challenges of climate change, food security, and poverty alleviation requires enhancing the adaptive capacity and mitigation potential of agricultural landscapes across the tropics. However, adaptation and mitigation activities tend to be approached separately due to a variety of technical, political, financial, and socioeconomic constraints. Here, we demonstrate that many tropical agricultural systems can provide both mitigation and adaptation benefits if they are designed and managed appropriately and if the larger landscape context is considered. Many of the activities needed for adaptation and mitigation in tropical agricultural landscapes are the same needed for sustainable agriculture more generally, but thinking at the landscape scale opens a new dimension for achieving synergies. Intentional integration of adaptation and mitigation activities in agricultural landscapes offers significant benefits that go beyond the scope of climate change to food security, biodiversity conservation, and poverty alleviation. However, achieving these objectives will require transformative changes in current policies, institutional arrangements, and funding mechanisms to foster broad-scale adoption of climate-smart approaches in agricultural landscapes.
Climate change can be addressed by mitigation (reducing the sources or enhancing the sinks of greenhouse gases) and adaptation (reducing the impacts of climate change). Mitigation and adaptation present two fundamentally dissimilar approaches whose differences are now well documented. Forest ecosystems play an important role in both adaptation and mitigation and there is a need to explore the linkages between these two options in order to understand their trade-offs and synergies. In forests, potential trade-offs can be observed between global ecosystem services, such as the carbon sequestration relevant for mitigation, and the local ecosystem services that are relevant for adaptation. In addition, mitigation projects can facilitate or hinder the adaptation of local people to climate change, whereas adaptation projects can affect ecosystems and their potential to sequester carbon. Linkages between adaptation and mitigation can also be observed in policies, but few climate change or forest policies have addressed these linkages in the forestry sector. This paper presents examples of linkages between adaptation and mitigation in Latin American forests. Through case studies, we investigate the approaches and reasons for integrating adaptation into mitigation projects or mitigation into OPEN ACCESSForests 2011, 2 432adaptation projects. We also analyze the opportunities for mainstreaming adaptation-mitigation linkages into forest or climate change policies.
The field of ecological restoration (ER) is now challenged by the need to achieve recovery at large spatial scales. Such scaling up requires technological expertise, inclusiveness and clarity of goals, and correct governance schemes and monitoring protocols, which are often absent from ER projects in most countries. We analyze the case of Colombia by assessing the planning, governance, and monitoring practices of 119 ER projects, and discuss them in the context of scaling up efforts to meet international commitments. In a top-down approach, Colombia´s government is the biggest ER driver: setting up the necessary policy framework to promote ER, and initiating 64% and fully financing 78% of the projects in the country. However, projects lack depth in participatory governance and adequate planning and monitoring, limiting their potential for sustainability and knowledge sharing, both of which are necessary for scaling up. We propose three areas for improvement in order to scale-up and meet international ER targets in Colombia, as well as in other Latin American countries, such as Mexico, Chile, and Argentina, which are also in the process of consolidating a large-scale ER vision. The benefits of some of those improvements have already been demonstrated in Brazil.
As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.