Stiffness is an important element in the model of a parallel manipulator. A complete stiffness analysis includes the contributions of joints as well as structural elements. Parallel manipulators potentially include both actuated joints, passive compliant joints, and zero stiffness joints, while a leg may impose constraints on the end-effector in the case of lower mobility parallel manipulators. Additionally, parallel manipulators are often designed to interact with an environment, which means that an external wrench may be applied to the end-effector. This paper presents a Jacobian-based stiffness analysis method, based on screw theory, that effectively considers all above aspects and which also applies to parallel manipulators with non-redundant legs.
A complete stiffness analysis of a parallel manipulator considers the structural compliance of all elements, both in designed degrees-of-freedom (DoFs) and constrained DoFs, and also includes the effect of preloading. This paper presents the experimental validation of a Jacobian-based stiffness analysis method for parallel manipulators with nonredundant legs, which considers all those aspects, and which can be applied to limited-DoF parallel manipulators. The experimental validation was performed by comparing differential wrench measurements with predictions based on stiffness analyses with increasing levels of detail. For this purpose, two passive parallel mechanisms were designed, namely, a planar 3DoF mechanism and a spatial 1DoF mechanism. For these mechanisms, it was shown that a stiffness analysis becomes more accurate if preloading and structural compliance are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.