Redox isomerism is observed for a lanthanide complex for the first time. Upon lowering the temperature, an electron of [{(dpp-bian)Yb(μ-Cl)(dme)}(2)] (1) is transferred from the metal to the ligand (see picture), giving rise to marked shortening of Yb-N bonds and a hysteretic jump in the magnetic moment. The crystal packing is of a crucial importance, as two other crystal modifications of 1 do not undergo this effect.
Acetylene, phenylacetylene, and alkylbutynoates add reversibly to (dpp-bian)Ga-Ga(dpp-bian) (dpp-bian=1,2-bis[(2,6-diisopropylphenyl)-imino]acenaphthene) to give addition products [dpp-bian(R(1)C=CR(2))]Ga-Ga[(R(2)C=CR(1))dpp-bian]. The alkyne adds across the Ga-N-C section, which results in new carbon-carbon and carbon-gallium bonds. The adducts were characterized by electron absorption, IR, and (1)H NMR spectroscopy and their molecular structures have been determined by single-crystal X-ray analysis. According to the X-ray data, a change in the coordination number of gallium from three [in (dpp-bian)Ga-Ga(dpp-bian)] to four (in the adducts) results in elongation of the metal-metal bond by approximately 0.13 Å. The adducts undergo a facile alkynes elimination at elevated temperatures. The equilibrium between [dpp-bian(PhC=CH)]Ga-Ga[(HC=CPh)dpp-bian] and [(dpp-bian)Ga-Ga(dpp-bian) + 2 PhC≡CH] in toluene solution was studied by (1)H NMR spectroscopy. The equilibrium constants at various temperatures (298≤T≤323 K) were determined, from which the thermodynamic parameters for the phenylacetylene elimination were calculated (ΔG°=2.4 kJ mol(-1), ΔH°=46.0 kJ mol(-1), ΔS°=146.0 J K(-1) mol(-1)). The reactivity of (dpp-bian)Ga-Ga(dpp-bian) towards alkynes permits use as a catalyst for carbon-nitrogen and carbon-carbon bond-forming reactions. The bisgallium complex was found to be a highly effective catalyst for the hydroamination of phenylacetylene with anilines. For instance, with [(dpp-bian)Ga-Ga(dpp-bian)] (2 mol%) in benzene more than 99% conversion of PhNH(2) and PhC≡CH into PhN=C(Ph)CH(3) was achieved in 16 h at 90 °C. Under similar conditions, the reaction of 1-aminoanthracene with PhC≡CH catalyzed by (dpp-bian)Ga-Ga(dpp-bian) formed a carbon-carbon bond to afford 1-amino-2-(1-phenylvinyl)anthracene in 99% yield.
Reaction of (dpp-BIAN)Mg(THF) 3 (1) {dpp-BIAN = 1,2-bis [(2,6-diisopropylphenyl)imino]acenaphthene} with one molar equivalent of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) proceeds with oxidation of the dpp-BIAN dianion in 1 to the radical-anion and affords the (dpp-BIAN)-Mg(TEMPO)(thf) (2) complex. The reaction of dpp-BIAN with an excess amount of magnesium and 0.5 molar equivalents of I 2 in Et 2 O gives (dpp-BIAN)MgI(Et 2 O) n , which then reacts in situ with (Me 3 Si) 2 NK to produce (dpp-BIAN)-Mg[N(SiMe 3 ) 2 ](Et 2 O) (3). Solvent-free magnesium amide (dpp-BIAN)Mg[N(SiMe 3 ) 2 ] (4) was synthesized by treating equimolar amounts of MgI 2 , dpp-BIAN, and sodium in tolu-
Compounds [Sr(dpp-bian)(thf)4] (2), [Ba(dpp-bian)(dme)2.5] (3) and [Mg(dtb-bian)(thf)2] (4) (dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene; dtb-bian = 1,2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene) were prepared by reduction of dpp-bian and dtb-bian with an excess of metallic Mg, Sr, or Ba in THF or DME. Reactions of [Mg(dpp-bian)(thf)3], 3, and 4 with diphenylacetonitrile gave keteniminates [Mg(dpp-bianH)(NCCPh2)(thf)2] (5), [Mg(dtb-bianH)(NCCPh2)(thf)2] (6), and [Ba(dpp-bianH)(NCCPh2)(dme)2] (7), respectively. The reaction of 2 with CH3C[triple chemical bond]N in THF gave [{Sr(dpp-bianH)[N(H)C(CH3)C(H)CN](thf)}2] (8). The compounds 2, 3, 5-8 were characterized by elemental analysis, and IR and NMR spectroscopy. Molecular structures of 2, 3, 7, and 8 were determined by single-crystal X-ray diffraction. In contrast to reactions of alkali-metal reagents, magnesium amides, or yttriumalkyls with alpha-H acidic nitriles, which are accompanied by an amine or an alkane elimination, the reactions of [Mg(dpp-bian)(thf)3] (1), 2, 3, and 4 with such nitriles proceeded with formation of Mg, Sr, and Ba keteniminates and simultaneous protonation of one nitrogen atom of the bian ligand. The NMR spectroscopic data obtained for complex 5 indicated that in solution the amino hydrogen atom underwent the fast (on the NMR timescale) shuttle transfer between both nitrogen atoms of the dpp-bianH ligand.
The present study first describes the reactivity of low valent Al(ii) and Ga(ii) complexes of the type (dpp-bian)M-M(dpp-bian) (1, M = Al; 2, Ga; dpp-bian2- = 1,2-bis-(2,6-iPr2-C6H3)-acenaphthenequinonediamido) with cyclic esters/carbonates such as ε-caprolactone (CL) and trimethylene carbonate (TMC). CL and TMC both readily coordinate to the Al(ii) species 1 to form the corresponding bis-adducts (dpp-bian)Al(L)-(L)Al(dpp-bian) (3, L = CL; 4, L = TMC), which were structurally characterized confirming that the Al(ii)-Al(ii) dimetallic backbone retains its integrity in the presence of such cyclic polar substrates. In contrast, the less Lewis acidic Ga(ii) analogue 2 shows no reaction in the presence of stoichiometric amounts of CL and TMC at room temperature. In combination with BnOH, the dinuclear Al(ii) species 1 revealed to be an extremely active Al(ii) initiator for the controlled ROP of CL at room temperature, outperforming all its Al(iii) congeners reported thus far. Detailed DFT studies on the ROP mechanism are consistent with a process occurring thanks to the metallic cooperativity between the two Al(ii) proximal (since directly bonded) metal centers in 1, which undoubtedly favors the ROP process through bimetallic activation and thus rationalizes the unusually high CL ROP activity at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.