Alpha-bsm® is a first generation self-setting, injectable and moldable apatitic calcium phosphate cement (CPC) based on amorphous calcium phosphate (ACP). ACP was prepared using low temperature double decomposition technique, from a calcium solution (0.16 M), and phosphate solution (0.26 M) in a basic (pH~13) media. ACP was than stabilized using three crystal growth inhibitors (CO32-, Mg2+, P2O74-), freeze-dried, and heated (450 °C, 1h) to remove additional moisture and some inhibitors. Dicalcium phosphate dehydrate (DCPD) was also prepared using wet chemistry at room temperature from calcium and phosphate solution, respectively, 0.3 M and 0.15 M. ACP and DCPD powder were combined at a 1:1 ratio and ground to produce Alpha-bsm® bone cement. The cement is supplied as a powder and when mixed with an appropriate amount (0.8 ml/g) of physiological saline at room temperature, forms an injectable putty-like paste. The paste has a working time of about 45 minutes at room temperature, when stored in a moist environment. The setting reaction proceeds isothermically at body temperature (37°C) in less than 20 minutes, forming a hardened, porous (total porosity 50 to 60%), low crystalline (40% comparing with HA), apatitic calcium phosphate cement with a compressive strength range of 10 to 12 MPa. Extensive pre-clinical studies (rabbit radius critical sized defect, canine tibia osteotomy, sheep tibia, primate fibula fracture healing, and primate fibula critical size defect) demonstrate that Alpha-bsm® undergoes remodeling in conjunction with new bone formation. The next generation of Bone Substitute Materials (Beta-bsmTM and Gamma-bsm TM) are formulated based on the Alpha-bsm® chemistry but differ in powder processing (e.g. milling) technique. These materials are also self-setting, injectable and/or moldable apatitic calcium phosphate cements with improved handling and mechanical properties. The setting & hardening reaction of these new CPCs proceeds isothermically in less than 5 minutes at 37°C and once hardened demonstrate a compressive strength of 30 to 50 MPa. The final product (after full conversion) is a low crystalline (40% compared with Hydroxyapatite), calcium deficient (Ca/P atomic ratio = 1.45) carbonated apatite similar to the composition and structure of natural bone mineral (crystal size: length = 26 nm, width thickness = 8 nm). A desirable feature of these cements is their high surface chemistry (with specific surface area of about 180-200 m2/g) which is ideal for remodeling and controlled release of growth factors. A pilot rabbit critically sized femoral defect study comparing the three synthetic family products demonstrate that they share similar remodeling and resorption characteristics up to 52 weeks. Physico-chemical and mechanical performance of these next generation CPCs are favorable when compared with existing CPCs in the market, specifically material working time (at room temperature), cohesivity in a wet environment and fast setting & hardening rate (at body temperature).
A new class of osteoconductive and osteoinductive combination biomaterials composed of calcium phosphate cement (CPC), demineralized bone matrix (DBM) and a water-soluble viscosity modifier were prepared and characterized in-vitro and in-vivo. In previous studies, a range of combinations formulations were tested in order to compare their performance characteristic. In-vitro characterization results show that the mechanical strength is decreased when the amount of DBM increases. However, DBM does not affect the CPC’s ability to set hard and convert to nanocrystalline apatitic calcium phosphate, which shares the chemical structure of natural bone as seen in x-ray diffraction. It is known that the DBM alone is osteoinductive. In-vivo osteoinductivity testing of the formulations in an intramuscular, athymic rat model demonstrated that the combination material is also osteoinductive. Two formulations were chosen for in-vivo efficacy testing based on the results of in-vitro and in-vivo characterization. These formulations were studied using rabbit critical-sized femoral core defect model. The formulations were composed of DBM with particle sizes of 250 to 710 μm, carboxymethyl-cellulose (CMC) as the viscosity modifier and weight percent compositions of 50% DBM/ 45% CPC/ 5% CMC and 60% DBM/ 30% CPC/ 10% CMC. Bone integration and healing was graded at 6, 12, and 24 weeks. The two formulations were compared to the gold standard autograft at 12 weeks and to an empty defect as the negative control at 24 weeks. Based on micro-computed topography (μCT), both formulations allowed for continuity of bone throughout the defect region at all time points. No differences in dense area fraction were seen between two formulations at 6 weeks (p = 0.8661). There was no significant statistical difference between the two formulations and autograft at 12 weeks (p = 0.2467). At 24 weeks, both formulations had significantly higher dense area fractions than empty controls (p = 0.0001). Histologically, the biology of the treatment areas appeared to have returned to normal by 24 weeks with CPC appearing to be the principal osteogenic inducer. In conclusion, these combinations of CPC and DBM offers significant advantages (handling, mechanical properties and osteoinductivity) over current DBM products and can be an effective alternative to autograft in healing of bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.