The present paper reports on the combined stereoscopic particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of turbulent transport for model swirl burners without combustion. Two flow types were considered, namely the mixing of a free jet with surrounding air for different swirl rates of the jet (Re = 5 × 103) and the mixing of a pilot jet (Re = 2 × 104) with a high-swirl co-flow of a generic gas turbine burner (Re = 3 × 104). The measured spatial distributions of the turbulent Reynolds stresses and fluxes were compared with their predictions by gradient turbulent transport models. The local values of the turbulent viscosity and turbulent diffusivity coefficients were evaluated based on Boussinesq’s and gradient diffusion hypotheses. The studied flows with high swirl were characterized by a vortex core breakdown and intensive coherent flow fluctuations associated with large-scale vortex structures. Therefore, the contribution of the coherent flow fluctuations to the turbulent transport was evaluated based on proper orthogonal decomposition (POD). The turbulent viscosity and diffusion coefficients were also evaluated for the stochastic (residual) component of the velocity fluctuations. The high-swirl flows with vortex breakdown for the free jet and for the combustion chamber were characterized by intensive turbulent fluctuations, which contributed substantially to the local turbulent transport of mass and momentum. Moreover, the high-swirl flows were characterized by counter-gradient transport for one Reynolds shear stress component near the jet axis and in the outer region of the mixing layer.
This article presents the estimation of turbulent Schmidt number in a model gas turbine combustor. Different gases are used as the model fuel while maintaining the mass flow rate. The simplest closure models for Reynolds stress and turbulent flux are considered. The anisotropy of turbulent viscosity is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.