The sulfolipid 6-sulfo-alpha-D-quinovosyldiacylglycerol is associated with the thylakoid membranes of many photosynthetic organisms. Previously, genes involved in sulfolipid biosynthesis have been characterized only in the purple bacterium Rhodobacter sphaeroides. Unlike plants and cyanobacteria, photosynthesis in this bacterium is anoxygenic due to the lack of a water splitting photosystem II. To test the function of sulfolipid in an organism with oxygenic photosynthesis, we isolated and inactivated a sulfolipid gene of the cyanobacterium Synechococcus sp. PCC7942. Extensive analysis of the sulfolipid-deficient null mutant revealed subtle changes in photosynthesis related biochemistry of O2. In addition, a slight increase in the variable room temperature chlorophyll fluorescence yield was observed. Regardless of these changes, it seems unlikely that sulfolipid is an essential constituent of a functional competent water oxidase or the core antenna complex of photosystem II. However, reduced growth of the mutant under phosphate-limiting conditions supports the hypothesis that sulfolipid acts as a surrogate for anionic phospholipids under phosphate-limiting growth conditions.
Oscillation patterns of the oxygen yield per flash induced by a train of single-turnover flashes were measured as a function of dark incubation and different pre-illumination conditions in several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions within the large, lumen-exposed hydrophilic region (loop E) of the chlorophyll a-binding photosystem II protein CP47. A physiological and biochemical characterization of these mutant strains has been presented previously [Eaton-Rye, J. J., & Vermaas, W. F. J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J. J., Renger, G., & Vermaas, W. F. J. (1993) Biochemistry 32, 4444-4454], and some functional properties were described recently [Gleiter, H. M., Haag, E., Shen, J.-R., Eaton-Rye, J. J., Inoue, Y., Vermaas, W. F. J., & Renger, G. (1994) Biochemistry 33, 12063-12071]. The present study shows that in several mutants the water-oxidizing complex (WOC) became inactivated during prolonged dark incubation, whereas the WOC of the wild-type strain remained active. The rate and extent of the inactivation in the mutants depend on the domain of loop E, where 3-8 amino acid residues were deleted. The most pronounced effects are observed in mutants delta(A373-D380) and delta(R384-V392). A competent WOC can be restored from the fully inactivated state by illumination with short saturating flashes. The number of flashes required for this process strongly depends on the site at which a deletion has been introduced into loop E. Again, the most prominent effects were found in mutants delta(A373-D380) and delta(R384-V392). Interestingly, the number of flashes required for activation was reduced by more than an order of magnitude in both mutants by the addition of 10 mM CaCl2 to the cell suspension. On the basis of a model for photoactivation proposed by Tamura and Cheniae (1987) [Biochim. Biophys. Acta 890, 179-194], a scheme is presented for the processes of dark inactivation and photoactivation in these mutants. The results presented here corroborate an important role of the large hydrophilic domain (loop E) of CP47 in a functional and stable WOC.
The possibility of reconstituting a functionally competent endogenous plastoquinone pool in photosystem II (PS II) membrane fragments, inside-out-vesicles (ISO-vesicles), and PS II core complexes was analyzed by measuring (i) the characteristic period four oscillation of the oxygen yield due to excitation of dark-adapted samples with a train of short flashes and (ii) laser flash-induced transients of the relative quantum yield of chlorophyll fluorescence. The data obtained revealed that (a) an endogenous pool capacity comparable to that of intact thylakoids can be restored in PS II membrane fragments and ISO-vesicles by a sonication treatment using native plastoquinone-9, (b) a more pronounced oxygen oscillation pattern arises in PS II core complexes after application of the same reconstitution procedure, (c) the extent of the endogenous pool restoration at a ratio of 15 quinone molecules per PS II in the reconstitution assay strongly depends on the nature of the quinone molecule [maximum effects can be only achieved with PQ-9, while at the same concentration ubiquinone-45 (UQ-9) is almost inefficient], and (d) a sonication step is required for stable insertion of PQ-9 into PS II preparations. Measurements of the reconstruction degree as a function of the structure of different quinones with selected properties lead to the conclusion that specific binding domains exist in PS II in addition to the QB site. These domains exhibit a surprisingly high specificity for the type of quinone that can be bound. On the basis of a comparison of the results obtained, the structure of the quinone head group seems to be more important than the large hydrophobic side chain and/or the general lipophilicity of the compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.