The numerical prediction of production from stimulated Ultra-Low Permeability (ULP) media is highly correlated with the type of fracture model used in the simulator. Although there are some general rules about the applicability of these fracture models, there are no guidelines for the a-priori selection of an appropriate model -generally, the fracture model is selected based on the preference and/or familiarity of the person performing the modeling, rather than some "more technical" criteria. In that light, this work presents an effort to provide guidance for fracture model suitability for cases from the Eagle Ford, Bakken, Three Forks, and Wolfcamp formations.In this work, production data from multiple wells in the aforementioned reservoirs are history-matched using models commonly available in commercial reservoir simulators. We evaluate the ability of the equivalent continuum model (ECM), the dual porosity, the dual permeability, and the multiple interactive continuum model (MINC) to represent these wells.We determine that a correlation exists between the choice of the fracture model and the reservoir. However, the results of the study do not provide a sufficiently strong indication of model superiority which would support authoritative guidelines about applicability for a particular reservoir. Ultimately the choice of the most representative model depends on the particular well. The proposed recommendationsprovide guidance onthe appropriate fracture model to represent the studied reservoirs, thus enhancing their usefulness in the completion design process and the evaluation and prediction of production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.