The effect of polyethylene-grafted maleic anhydride (PE-g-MAH) on the tensile properties, morphology and thermal properties of low-density polyethylene (LDPE)/eggshell powder (ESP) composites was studied. LDPE/ESP composites with different eggshell powder content and the addition of PE-g-MAH were prepared with Z-blade mixer at 180 C and rotor speed of 50 rpm. The tensile strength, elongation at break and thermal stability of LDPE/ESP composites with PE-g-MAH were greater than LDPE/ESP composites, and their differences became more pronounced at higher filler content. The interfacial adhesion between ESP and LDPE was improved with the addition of PE-g-MAH as evidenced by the morphological study.
Low density polyethylene (LDPE)/modified water hyacinth fiber (WHF) composites have been prepared by melt blending. All the composites were characterized by tensile test, differential scanning calorimetry (DSC), water absorption behaviour, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results indicated that LDPE/WHF composites with NCO-polyol as a coupling agent show higher values of tensile strength, Young's modulus and water absorption resistance but lower elongation at break than LDPE/WHF composites without NCO-polyol. The micrographs of SEM showed that the WHF were more widely dispersed in the LDPE matrix with the addition of the NCO-polyol as a coupling agent. It was also found that the modified WHF offers better thermal stability in the LDPE/WHF composites than unmodified WHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.