Many methods for estimating site response compare ground motions at sites of interest to a nearby rock site that is considered a “reference” motion. The critical assumption in these methods is that the surface-rock-site record (reference) is equivalent to the input motion at the base of the soil layers. Data collected in this study show that surface-rock sites can have a site response of their own, which could lead to an underestimation of the seismic hazard when these sites are used as reference sites. Data were collected from local and regional earthquakes on digital recorders, both at the surface and in boreholes, at two rock sites and one basin site in the San Jacinto mountains, southern California. The two rock sites, Keenwild and Piñon Flat, are located on granitic bedrock of the southern California peninsular ranges batholith. The basin site, Garner Valley, is an ancestral lake bed with watersaturated sediments, on top of a section of decomposed granite, which overlies the competent bedrock. Ground motion is recorded simultaneously at the surface and in the bedrock at all three sites. When the surface-rock sites are used as the reference site, i.e., the surface-rock motion is used as the input to the basin, the computed amplification underestimates the actual amplification at the basin site for frequencies above 2 to 5 Hz. This underestimation, by a factor of 2 to 4 depending on frequency and site, results from the rock sites having a site response of their own above the 2-to 5-Hz frequencies. The near-surface weathering and cracking of the bedrock affects the recorded ground motions at frequencies of engineering interest, even at sites that appear to be located on competent crystalline rock. The bedrock borehole ground motion can be used as the reference motion, but the effect of the downgoing wave field and the resulting destructive interference must be considered. This destructive interference may produce pseudo-resonances in the spectral amplification estimates. If one is careful, the bedrock borehole ground motion can be considered a good reference site for seismic hazard analysis even at distances as large as 20 km from the soil site.
During the months that followed the 17 January 1994 M 6.7 Northridge, California, earthquake, portable digital seismic stations were deployed in the San Fernando basin to record aftershock data and estimate site-amplification factors. This study analyzes data, recorded on 31 three-component stations, from 38 aftershocks ranging from M 3.0 to M 5.1, and depths from 0.2 to 19 km. Site responses from the 31 stations are estimated from coda waves, S waves, and ratios of horizontal to vertical (H/V) recordings. For the coda and the S waves, site response is estimated using both direct spectral ratios and a generalized inversion scheme. Results from the inversions indicate that the effect of Qs can be significant, especially at high frequencies. Site amplifications estimated from the coda of the vertical and horizontal components can be significantly different from each other, depending on the choice of the reference site. The difference is reduced when an average of six rock sites is used as a reference site. In addition, when using this multi-reference site, the coda amplification from rock sites is usually within a factor of 2 of the amplification determined from the direct spectral ratios and the inversion of the S waves. However, for nonrock sites, the coda amplification can be larger by a factor of 2 or more when compared with the amplification estimated from the direct spectral ratios and the inversion of the S waves. The H/V method for estimating site response is found to extract the same predominant peaks as the direct spectral ratio and the inversion methods. The amplifications determined from the H/V method are, however, different from the amplifications determined from the other methods. Finally, the stations were grouped into classes based on two different classifications, general geology and a more detailed classification using a quaternary geology map for the Los Angeles and San Fernando areas. Average site-response estimates using the site characterization based on the detailed geology show better correlation between amplification and surface geology than the general geology classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.