We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W band. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5σ limiting depth (within an aperture of radius 0. 17) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U-band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 µm) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zeropoint offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10 10 M at a 50% completeness level to z∼3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z∼2-4 via the Balmer break. It is also used to study the color-magnitude diagram of galaxies at 0
We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CAN-DELS) photometric redshift methods investigation. In this investigation, the results from eleven participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs) and priors, are used to examine the properties of photometric redshifts applied to deep fields with broad-band multi-wavelength coverage. The photometry used includes U -band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter, the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates. 1 2 Dahlen et al.
We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Nearinfrared Deep Extragalactic Legacy Survey (CANDELS) project. We combine the effort from ten different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ∼80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age < 100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for < 20 Myr sources) if nebular contribution is ignored.
We have identified 335 galaxy cluster and group candidates, 106 of which are at z > 1, using a 4.5 m-selected sample of objects from a 7.25 deg 2 region in the Spitzer Infrared Array Camera (IRAC ) Shallow Survey. Clusters were identified as three-dimensional overdensities using a wavelet algorithm, based on photometric redshift probability distributions derived from IRAC and NOAO Deep Wide-Field Survey data. We estimate only $10% of the detections are spurious. To date 12 of the z > 1 candidates have been confirmed spectroscopically, at redshifts from 1.06 to 1.41. Velocity dispersions of $750 km s À1 for two of these argue for total cluster masses well above 10 14 M , as does the mass estimated from the rest-frame near-infrared stellar luminosity. Although not selected to contain a red sequence, some evidence for red sequences is present in the spectroscopically confirmed clusters, and brighter galaxies are systematically redder than the mean galaxy color in clusters at all redshifts. The mean I À ½3:6 color for cluster galaxies up to z $ 1 is well matched by a passively evolving model in which stars are formed in a 0.1 Gyr burst starting at redshift z f ¼ 3. At z > 1, a wider range of formation histories is needed, but higher formation redshifts (i.e., z f > 3) are favored for most clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.