The single crystals of two structural isomers of bis‐olefinic molecules were shown to have contrasting properties in terms of their photoreactivity: one exhibits an excellent ability to form polymers, accompanied with bending of crystals upon irradiation, while the other is photostable. The photoreactive crystal is a first example in which [2+2] polymerization leads to bending of the crystals, with implications for the design of photoactuators. The hydrate formation ability of one of these molecular isomers promotes the solid‐state reactivity in its crystal, as the H2O molecules act as a template to bring the olefin molecules into the required arrangement for [2+2] polymerization. Further, the crystals of the polymer exhibited better flexibility and smoothed surfaces compared to those of the monomers. In addition, under UV‐light the diene emits bluish violet light while the polymer emits green light, indicating that the luminescence property can be tuned through photoirradiation.
RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CEνNS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). RES-NOVA with only a total active volume of (60 cm) 3 and an energy threshold of 1 keV will probe the entire Milky Way Galaxy for (failed) core-collapse SNe with > 3 σ detection significance. The high detector modularity makes RES-NOVA ideal also for reconstructing the main parameters (e.g. average neutrino energy, star binding energy) of SNe occurring in our vicinity, without deterioration of the detector performance caused by the high neutrino interaction rate. For the first time, distances < 3 kpc can be surveyed, similarly to the ones where all known past galactic SNe happened. We discuss the RES-NOVA potential, accounting for a realistic setup, considering the detector geometry, modularity and background level in the region of interest. We report on the RES-NOVA background model and on the sensitivity to SN neutrinos as a function of the distance travelled by neutrinos.
Acefylline (ACF) is a stimulant xanthine derivative drug, which is formulated as a piperazine salt for the treatment of bronchial asthma. ACF falls under BCS class IV category of low solubility and poor permeability, which together limit the bioavailability and efficacy of the drug. In this work, ACF binary and ternary cocrystals, salts−cocrystals, and their polymorphs are synthesized by cocrystallization with several coformers. Two different methods were adopted for the supramolecular assembly of the ternary systems A.B.C: (1) first, binary adducts A.B or A.C were crystallized by grinding a slurry of the components in a suitable solvent and then C was added and grinding was continued; and (2) all three components were taken in a solvent slurry and ground together. The former method was found to be superior in affording the ternary salt/cocrystal. The role of laboratory seeding is implicated to explain the variation in crystallization results at different stages of the project. Crystal structures of the product's binary and ternary systems were solved by single-crystal X-ray diffraction and powder X-ray diffraction data for structure solution. The crystal structures show the recurrence of carboxylate−pyridinium and imidazole−acid heterosynthons in the binary and ternary adducts. The intermolecular interactions between ACF and the coformer are analyzed by Hirshfeld surfaces, 2D fingerprint plots, and an energy framework. The permeability of ACF increases in binary and ternary systems with selected coformers. The fast dissolution and high permeability of ACF-PIP make this salt an improved crystalline formulation of acefylline.
Two novel Cd(II) and Zn(II) based multichromic coordination polymers (CPs) containing 2,4,5-tri(4-pyridyl)-imidazole, L, with general formulas {[Cd2 L 4(SO4)(H2O)]·(SO4)·21H2O} n , 1, and {[Zn2 L 4(SO4)(H2O)2]·2(MeOSO3)·25H2O} n , 2, have been synthesized which consist of two-dimensional layered structures with continuous channels. These CPs are found to exhibit instant and reversible solvatochromic properties via visual color change in the presence of various solvent molecules such as DMF, DMA, CH3CN, CH3COCH3, DMSO, and Et3N as well as quick response for the absorption/detection of small molecules such as formaldehyde and acetaldehyde compared to higher aldehydes. The thermochromic and solvatochromic properties are associated with a color change from blue to green under UV light with significant changes in their emission properties and lifetimes. Further, piezochromic properties are associated with color change from blue to cyan under UV. These materials were also found to exhibit greater preference for adsorption of water vapor (200–300 cc/g) over N2 and CO2 gases and also anionic dye sorption such as Congo red from aqueous solution.
Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop's data repository together with a plotting tool for visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.