As the incidence of traumatic spinal cord injury (tSCI) in the elderly rises, clinicians are increasingly faced with difficult discussions regarding aggressiveness of management, likelihood of recovery, and survival. Our objective was to outline risk factors associated with in-hospital mortality in elderly surgical and non-surgical patients following tSCI and to determine those unlikely to have a favorable outcome. Data from elderly patients (≥ 65 years of age) in the Canadian Rick Hansen SCI Registry from 2004 to 2017 were analyzed using descriptive analysis. Survival and mortality groups in each of the surgical and non-surgical group were compared to explore factors associated with in-hospital mortality and their impact, using logistical regression. Of 1340 elderly patients, 1018 had surgical data with 826 having had surgery. In the surgical group, the median time to death post-injury was 30 days with 75% dying within 50 days compared with 7 days and 20 days, respectively, in the non-surgical group. Significant predictors for in-hospital mortality following surgery are age, comorbidities, neurological injury severity (American Spinal Injury Association [ASIA] Impairment Scale [AIS]), and ventilation status. The odds of dying 50 days post-surgery are six times higher for patients ≥77 years of age versus those 65–76 years of age, five times higher for those with AIS A versus those with AIS B/C/D, and seven times higher for those who are ventilator dependent. An expected probability of dying within 50 days post-surgery was determined using these results. In-hospital mortality in the elderly after tSCI is high. The trend with age and time to death and the significant predictors of mortality identified in this study can be used to inform clinical decision making and discussions with patients and their families.
Return to living at home is an important patient-reported outcome following traumatic spinal cord injury (tSCI). Specialized inpatient rehabilitation assists such patients in maximizing function and independence. Our project aim was to describe those patients receiving specialized rehabilitation after tSCI in Canada, and to determine if such rehabilitation improved the likelihood of returning home. This cohort study utilized data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) to identify patients with tSCI discharged from 1 of 18 participating acute specialized spine facilities between 2011 and 2015 to either 1 of 13 participating specialized rehabilitation facilities, or to another discharge destination. To determine if specialized rehabilitation affected likelihood of returning home, multiple logistic regressions and propensity score matchings were performed to account for age at injury, gender, neurological severity and level, acute length of stay (LOS), and region of residence. The χ test was used to compare rate of return home between matched groups. Of the 1599 patients included, 71% received specialized rehabilitation. Receiving specialized rehabilitation was a significant and strong predictor of return to home after controlling for covariates (adjusted odds ratio = 3.1; 95% confidence interval [CI], 1.6-5.9). The rate of return to home was significantly higher in the matched rehabilitation group than the no rehabilitation group (98% vs. 87%, p = 0.0004). For the matched patients, an extra 11 patients returned home for every 100 patients receiving specialized rehabilitation. However, effect of age on returning home requires further investigation. Improving access to specialized rehabilitation could potentially reduce discharges to nursing homes or other non-home destinations.
Background Most epidemiologic reports focus on lower extremity amputation (LEA) caused specifically by diabetes mellitus. However, narrowing scope disregards the impact of other causes and types of limb amputation (LA) diminishing the true incidence and societal burden. We explored the rates of LEA and upper extremity amputation (UEA) by level of amputation, sex and age over 14 years in Saskatchewan, Canada. Methods We calculated the differential impact of amputation type (LEA or UEA) and level (major or minor) of LA using retrospective linked hospital discharge data and demographic characteristics of all LA performed in Saskatchewan and resident population between 2006 and 2019. Rates were calculated from total yearly cases per yearly Saskatchewan resident population. Joinpoint regression was employed to quantify annual percentage change (APC) and average annual percent change (AAPC). Negative binomial regression was performed to determine if LA rates differed over time based on sex and age. Results Incidence of LEA (31.86 ± 2.85 per 100,000) predominated over UEA (5.84 ± 0.49 per 100,000) over the 14-year study period. The overall LEA rate did not change over the study period (AAPC -0.5 [95% CI − 3.8 to 3.0]) but fluctuations were identified. From 2008 to 2017 LEA rates increased (APC 3.15 [95% CI 1.1 to 5.2]) countered by two statistically insignificant periods of decline (2006–2008 and 2017–2019). From 2006 to 2019 the rate of minor LEA steadily increased (AAPC 3.9 [95% CI 2.4 to 5.4]) while major LEA decreased (AAPC -0.6 [95% CI − 2.1 to 5.4]). Fluctuations in the overall LEA rate nearly corresponded with fluctuations in major LEA with one period of rising rates from 2010 to 2017 (APC 4.2 [95% CI 0.9 to 7.6]) countered by two periods of decline 2006–2010 (APC -11.14 [95% CI − 16.4 to − 5.6]) and 2017–2019 (APC -19.49 [95% CI − 33.5 to − 2.5]). Overall UEA and minor UEA rates remained stable from 2006 to 2019 with too few major UEA performed for in-depth analysis. Males were twice as likely to undergo LA than females (RR = 2.2 [95% CI 1.99–2.51]) with no change in rate over the study period. Persons aged 50–74 years and 75+ years were respectively 5.9 (RR = 5.92 [95% Cl 5.39–6.51]) and 10.6 (RR = 10.58 [95% Cl 9.26–12.08]) times more likely to undergo LA than those aged 0–49 years. LA rate increased with increasing age over the study period. Conclusion The rise in the rate of minor LEA with simultaneous decline in the rate of major LEA concomitant with the rise in age of patients experiencing LA may reflect a paradigm shift in the management of diseases that lead to LEA. Further, this shift may alter demand for orthotic versus prosthetic intervention. A more granular look into the data is warranted to determine if performing minor LA diminishes the need for major LA.
Background Understanding trends in limb amputation (LA) can provide insight into the prevention and optimization of health care delivery. We examine the influence of primary (first report) and subsequent (multiple reports) limb amputation on the overall (all reports) rate of limb amputation in Saskatchewan considering amputation level. Methods Hospital discharged data associated with LA from 2006 to 2019 and population estimates in Saskatchewan were used. LA cases were grouped based on overall, primary, and subsequent LA and further divided by level into major (through/above the ankle/wrist) and minor (below the ankle/wrist). Incidence rates were calculated using LA cases as the numerator and resident population as the denominator. Joinpoint and negative binomial were used to analyze the trends. In addition, the top three amputation predisposing factors (APF) were described by LA groups. Results The rate of overall LA and primary LA remained stable (AAPC − 0.9 [95% CI − 3.9 to 2.3]) and (AAPC −1.9 [95% CI −4.2 to 0.4]) respectively, while the rate of subsequent LA increased 3.2% (AAPC 3.2 [95% CI 3.1 to 9.9]) over the 14-year study period. The rate of overall major LA declined 4.6% (AAPC − 4.6 [95% CI −7.3 to −1.7]) and was largely driven by the 5.9% decline in the rate of primary major LA (AAPC − 5.9 [95% CI − 11.3 to –0.2]). Subsequent major LA remained stable over the study period (AAPC −0.4 [95% CI − 6.8 to 6.5]). In contrast, the overall rate of minor LA increased 2.0% (AAPC 2.0 [95% CI 1.0 to 2.9]) over the study period which was largely driven by a 9.6% increase in the rate of subsequent minor LA (AAPC 9.6 [95% CI 4.9 to 14.4]). Primary minor LA rates remained stable over the study period (AAPC 0.6 [95% CI − 0.2 to 1.5]). The study cohorts were 1.3-fold greater risk of minor LA than major LA. Diabetes mellitus (DM) was the leading APF representing 72.8% of the cohort followed by peripheral vascular disease (PVD) and trauma with 17.1 and 10.1% respectively. Most (86.7%) of subsequent LA were performed on people with DM. Conclusions Overall LA rates remained stable over the study period with declining rates of major LA countered by rising rates of minor LA. Minor LA exceeded major LA with the largest rate increase identified in subsequent minor LA. Diabetes was the greatest APF for all LA groups. This rising rate of more frequent and repeated minor LA may reflect changing intervention strategies implemented to maintain limb function. The importance of long-term surveillance to understand rates of major and minor LA considering primary and subsequent intervention is an important step to evaluate and initiate prevention and limb loss management programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.