The low-temperature rotational relaxation of CO in self-collisions and in collisions with the rare-gas atoms Ne and He has been investigated in supersonic expansions with a combination of resonance-enhanced multiphoton ionization (REMPI) spectroscopy and time-of-flight techniques. For the REMPI detection of CO, a novel 2 + 1' scheme has been employed through the A(1)Pi state of CO. From the measured data, average cross sections for rotational relaxation have been derived as a function of temperature in the range 5-100 K. For CO-Ne and CO-He, the relaxation cross sections grow, respectively, from values of approximately 20 and 7 A(2) at 100 K to values of approximately 65-70 and approximately 20 A(2) in the 5-20 K temperature range. The cross section for the relaxation of CO-CO grows from a value close to 40 A(2) at 100 K to a maximum of 60 A(2) at 20 K and then decreases again to 40 A(2) at 5 K. These results are qualitatively similar to those obtained previously with the same technique for N(2)-N(2), N(2)-Ne, and N(2)-He collisions, although in the low-temperature range (T < 20 K) the CO relaxation cross sections are significantly larger than those for N(2). Some discrepancies have been found between the present relaxation cross sections for CO-CO and CO-He and the values derived from electron-induced fluorescence experiments.
A new measurement of the 235U(n,f) fission cross section was carried out at n_TOF. The experiment covered the neutron energy range from 10 MeV up to 500 MeV, and it used the 1H(n,n) cross section as normalization for the neutron fluence measurement. In this contribution, the measurements and the characterization of the detectors covering the incident energy range up to 150 MeV are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.