Emerging trends in the widespread use of technology has led to proliferation of images and videos acquired and distributed through electronic devices. There is an increasing need towards capturing high fidelity images and filtering of the concomitant noise inevitable in the capture, transmission and reception of the same. In this paper, we propose an OPSS (Optimized Patch based Self Similar) filter that exploits concurrently the photometric, geometric and graphical patch similarities of the image. This model recognizes similar patches to segregate the corrupted from the uncorrupted pixels in an image and improve the performance of denoising. Photometric patch similarity is established by using Non-Local Means Decision Based Unsymmetrical Trimmed Median (NLM-DBUTM) filter, which computes weights based on the reference patch. The geometrical patch similarity is done through the K-means clustering and graphically similar patches are identified through Ant Colony Optimization (ACO) technique. These “three similarities” based models have been taken advantage of and combined to arrive at a more comprehensive and effective denoising. The results obtained through the OPSS algorithm demonstrate improved efficiency in removing Gaussian and Impulse noise. Experimental results demonstrate that our proposed study achieves good performance with respect to other denoising algorithms being compared. Experimental results are based on performance measure (evaluation parameters) through Peak Signal to Noise Ratio (PSNR), Mean squared error (MSE) and Structural Similarity Index Measure (SSIM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.