Long noncoding ribonucleic acids (lncRNAs) are ribonucleic acid (RNA) molecules longer than 200 nucleotides without protein-coding capacity. Several studies have shown that lncRNAs play a pivotal role in the initiation, maintenance, and progression of acute myeloid leukemia (AML), which could make them a promising candidate in the diagnosis and treatment of leukemia. Acute Megakaryoblastic leukemia (AMKL) is a rare form of AML with a poor prognosis and low survival. It has been reported that lncRNA MIR100HG is involved several types of malignancies. In the present study, MIR100HG was downregulated in a human acute megakaryoblastic leukemia cell line (M-07e) using Antisense LNA GapmeRs. In order to assess the expression level of MIR100HG, cell viability, apoptosis, and necrosis (late apoptosis), quantitative reverse transcription polymerase chain reaction (qRT-PCR), Methyl-thiazol Tetrazolium assay, AnnexinV, and propidium iodide staining was performed at different time points after the transfection. In addition, the expression level of TGFb was evaluated by qRT-PCR. Our results revealed that inhibition of MIR100HG might serve as a new method for inhibition of the proliferation of AMKL cells and therefore, could be a promising approach in medicine for targeted therapy in AMKL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.