Cytoskeleton not only controls cell morphology but also regulates cell growth, migration, differentiation, and gene expression, events which are fundamental to embryogenesis, carcinogenesis, and wound healing. We have recently reported that reorganization of cytoskeleton induces expression of mRNA for transforming growth factor-beta 1 (TGF-beta 1), collagenase, and tissue inhibitor of metalloproteinase-I (TIMP-I) in dermal fibroblasts. In this report we have examined the role of gene transcription in this induction. As judged by nuclear run-on assay, trypsin, EGTA (ethylene glycol-bis (beta-aminoethyl ether) N, N, N', N', tetra-acetic acid), or cytochalasin C (Chs) increased the rate of transcription of the TGF-beta 1 gene by 2.0, 2.7, and 1.6 fold, respectively, and of the collagenase gene by 5.3, 6.2, and 3.3 fold. The rate of transcription of the TIMP-I gene was increased by trypsin (4.3 fold) or EGTA (3.8 fold) but unaffected by Chs. Cytochalasin induced an increase in the rate of transcription of procollagen I (alpha 1), procollagen I (alpha 2), and fibronectin genes by 1.4, 1.5, and 1.9 fold respectively, while trypsinization or EGTA treatment had no or little effects on these gene. Since transcription of the TGF-beta 1 gene is believed to be largely governed by the activating protein 1 (AP1) complex, we also examined the expression of mRNA for c-fos and c-jun protoon-coproteins. Trypsinization induced rapid (within 30 min) and transient expression of c-fos mRNA. A 2.4 fold increase in c-jun mRNA was apparent after 4 hr and persisted for at least 24 hr. Actinomycin D (Act D) suppressed the induction of TGF-beta 1 mRNA by Chs but had less effect on the TGF-beta 1 mRNA in trypsinized cells which had been replated for 4 hr, suggesting that the half life of TGF-beta 1 mRNA is reduced in cells with a disassembled cytoskeleton. Simultaneous treatment with Chs and cycloheximide (Cxm) resulted in a superinduction of TGF-beta 1 mRNA by 88 +/- 23% (n = 4, P < 0.05), which was abrogated by preexposure to Act D. In contrast, the induction of collagenase mRNA by Chs was totally blocked by Cxm, indicating that the Cxm-mediated superinduction is selective and that protein synthesis is required for induction of this mRNA. Our results suggest that the activities of genes for proteins involved in the structure (Type I collagen and fibronectin), turnover (collagenase and TIMP-1) and regulation (TGF-beta 1) of extracellular matrix (ECM), are all governed at least in part by the status of the cytoskeleton. Since the cytoskeleton is reorganized during cell division, migration, and differentiation, these results may have implications for the regulation of ECM during such processes as embryogenesis, carcinogenesis, and wound healing.
Antisense preproET-1 oligodeoxynucleotide treatment, when combined with clot lysis caused by rtPA, reduced vasospasm in the canine model of SAH, and this effect appeared to be related to reduced ET-1 synthesis. The results of this experiment support a causative role for ET-1 early in the course of vasospasm development in dogs. The apparent additive therapeutic effects of antisense and fibrinolytic treatments could be due to clot lysis, which allows better delivery of oligodeoxynucleotides to arteries within the subarachnoid space.
The mechanism of in vivo activation of transforming growth factor-beta1 (TGF-beta1), which is critical to its role in many physiological and pathological conditions, is not fully understood. To explore the mechanism by which dermal fibroblasts respond to latent TGF-beta1 directly, the efficacy of either latent TGF-beta1 (LTGF-beta1) alone or LTGF-beta1 plus cell membranes isolated from fibroblasts, mink lung, and one skin-related (Sk23) and two skin-unrelated (U251 and D54MG) transformed cell lines was examined using the mink lung epithelial cell (Mv1Lu) inhibition assay. As a source of LTGF-beta1, PA317 cells were transfected with previously constructed pLin-TGF-beta1 or pLin vectors with no TGF-beta1 insert. LTGF-beta1 expressing PA317 cells were then enriched by growth in the presence of 0.5 mg G-418 for 6-10 days. Eight out of 53 colonies of cells expressing high levels of LTGF-beta1 were selected and their conditioned media were removed after 3 days and used to evaluate the latency and bioactivity of TGF-beta1 using ELISA and Mv1Lu growth inhibition assay, respectively. The level of TGF-beta1 was 19-fold greater (21.4 +/- 0.4 vs. 1.1 +/- 0.2 ng/ml) in conditioned medium derived from pLin-TGF-beta1 transfected cells than that of control. These conditioned media were then used for the subsequent cell proliferating experiments. The results showed that latent TGF-beta1, which proved to be inactive in an Mv1Lu inhibition assay, significantly stimulates fibroblast cell proliferation compared to that of control in a dose-dependent fashion. In another set of experiments, cells were treated with either active (acidified/neutralized) or latent TGF-beta1 and the results showed a significant increase in cell proliferation in response to low concentrations of active TGF-beta1. However, high concentrations of active TGF-beta1 markedly suppressed fibroblast proliferation. These dual effects were in contrast to a steady increase in fibroblast proliferation found in response to latent TGF-beta1. To explore why LTGF-beta1 has a differential proliferating effect on epithelial and fibroblast cell proliferation, cell membranes from these cells were isolated and incubated with PA317-conditioned medium containing LTGF-beta1 and then added to mink lung cells. Only isolated fibroblast cell membranes incubated with LTGF-beta1 inhibited Mv1Lu cells. To examine whether the LTGF-beta1 cell proliferating activity is unique to dermal fibroblasts or is a general phenomenon, in similar experimental conditions cell membranes from several cell lines, U251, D54MG, and SK23, were isolated, incubated with LTGF-beta1, and then added to an Mv1Lu inhibition assay. The proliferation of Mv1Lu epithelial cells was significantly (1547 +/- 269 vs. 3568 +/- 23) inhibited with SK23, but not U251 cell membranes plus LTGF-beta1 relative to that of control. The inhibitory effect of SK23 plus LTGF-beta1 was cell membrane dose-dependent. In conclusion, the result of this study shows that LTGF-beta1 may directly modulate cell proliferation of those cells that p...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.