In this study, we investigate the relativistic Klein-Gordon equation analytically for the Deng-Fan potential and Hulthen plus Eckart potential under the equal vector and scalar potential conditions. Accordingly, we obtain the energy eigenvalues of the molecular systems in different states as well as the normalized wave function in terms of the generalized Laguerre polynomials function through the NU method, which is an effective method for the exact solution of second-order linear differential equations.
In this study, we consider baryons as three-body bound systems according to hypercentral constituent quark model in configuration space and solve three-body Klein–Gordon equation. Then we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we used screened potential and calculate the eigenfunctions and eigenvalues of triply heavy baryons by using Nikiforov–Uvarov method. We compute the ground and excited state masses of triply heavy baryons with quantum numbers [Formula: see text], [Formula: see text], [Formula: see text] via constituent quark model approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.