The aim of this study was to estimate the incidence of COVID-19 disease in the French national population of dialysis patients, their course of illness and to identify the risk factors associated with mortality. Our study included all patients on dialysis recorded in the French REIN Registry in April 2020. Clinical characteristics at last follow-up and the evolution of COVID-19 illness severity over time were recorded for diagnosed cases (either suspicious clinical symptoms, characteristic signs on the chest scan or a positive reverse transcription polymerase chain reaction) for SARS-CoV-2. A total of 1,621 infected patients were reported on the REIN registry from March 16th, 2020 to May 4th, 2020. Of these, 344 died. The prevalence of COVID-19 patients varied from less than 1% to 10% between regions. The probability of being a case was higher in males, patients with diabetes, those in need of assistance for transfer or treated at a self-care unit. Dialysis at home was associated with a lower probability of being infected as was being a smoker, a former smoker, having an active malignancy, or peripheral vascular disease. Mortality in diagnosed cases (21%) was associated with the same causes as in the general population. Higher age, hypoalbuminemia and the presence of an ischemic heart disease were statistically independently associated with a higher risk of death. Being treated at a selfcare unit was associated with a lower risk. Thus, our study showed a relatively low frequency of COVID-19 among dialysis patients contrary to what might have been assumed.
This cross sectional study shows that low plasma 25OHD is a major risk factor for hyperparathyroidism and Looser's zones. In dialysis patients, we suggest that the plasma levels of 25OHD are maintained around the upper limit of the reference range of sunny countries.
This study suggests a bone-sparing effect of serum leptin in haemodialysis patients only when the serum levels of leptin were higher than the presumed threshold of blood-brain transport saturation. Higher leptin levels in post-menopausal female haemodialysis patients than in male patients may account for their slower bone loss with ageing.
The use of 1 α-hydroxyvitamin D3 [ 1 α(OH)D3] derivatives in a uremic patient is justified only in the treatment of hyperparathyroidism (i.e. when plasma intact parathyroid hormone -PTH – levels are above five or three times the upper limit of normal according to whether the patient is on continuous ambulatory peritoneal dialysis or on hemodialysis and between 0.5-1.5, 1-2 and 2-3 times the upper limit of normal for a creatinine clearance of, respectively, 30, between 30 and 10, or below 10 ml/min/1.73m2). The following prerequisites have however to be satisfied: (1) a good vitamin D3 repletion should be secured by plasma 25(OH)D levels of 20-30 ng/ml (if necessary by administration of native vitamin D or 25(OH)D3), and (2) phosphate retention (which is aggravated by the increased phosphate intestinal absorption induced by the 1α(OH)D derivatives) and the consequent possible hyperphosphatemia should be prevented or corrected by the oral administration of alkaline salts of calcium given before the meals as phosphate binders without inducing hypercalcemia. These prerequisites explain the narrow therapeutical margin of lα(OH)D3 derivatives in uremic patients before dialysis (more so in the adult than in the child) and the possible broadening of this margin in the patients on dialysis by the use of low dialysate calcium concentrations (1.25-1.00 mmol/l) in order to prevent hypercalcemia by inducing a negative perdialytic calcium balance. Once hyperphosphatemia is prevented by oral calcium, 1α(OH)D3 derivatives have the advantage to suppress the transcription of the prepro PTH gene by a mechanism independent of an increase in plasma calcium. Controlled randomized trials have not confirmed the claimed advantage in efficacy and safety of the parenteral versus the oral route nor of the intermittent versus the daily mode of their administration. The advantages of using the so called ‘nonhy-percalcemic hyperphosphatemic’ vitamin D3 derivatives in combination with oral calcium over 1α(OH)D3 derivatives in the treatment of uremic hyperparathyroidism are still waiting for clinical demonstration. Vitamin D derivatives have no place in the treatment of aluminic bone diseases which necessitate long term deferoxamine treatment and prevention of aluminum exposure by the dialysate and the phosphate binders. They are not indicated in the treatment of’idiopathic’ adynamic bone disease which is due to uremia per se combined with an excessive PTH suppression for the degree of renal failure. This low bone turnover pattern is associated with an increased risk of hypercalcemia and hyperphosphatemia and necessitates only a stimulation of PTH secretion by inducing a negative calcium balance with a lower dialysate calcium concentration or simply by discontinuing the oral calcium supplement in the uremic patient not yet dialyzed. In rare cases this pattern is due to a granulomatosis and is corrected by prednisone.
This article reviews the clinical, biological, radiological, and pathological procedures and their respective indications for the practical diagnosis of the following various histological patterns of renal osteodystrophy: osteitis fibrosa due to parathyroid hormone (PTH) hypersecretion: osteomalacia or rickets due to native vitamin D deficiency and/or aluminum overload; and adynamic bone disease (ABD) due to aluminum overload and/or PTH secretion oversuppression. Our advice regarding bone biopsy is to restrict it to patients with symptoms and hypercalcemia, especially those who have been previously exposed to aluminum. In other cases, we propose relying merely on the determination of the plasma concentrations of calcium, protide, phosphate, bicarbonate, intact PTH, aluminum, 25(OH)D3, and alkaline phosphatase (total and bony if hepatic disease is associated) to choose the appropriate treatment. Because of the danger of the desferrioxamine treatment necessary to chelate and remove aluminum, the suspicion of aluminic bone disease (osteomalacia or ABD) will always be confirmed by a bone biopsy. In the case of nonaluminic osteomalacia, correction of the vitamin D deficiency by native vitamin D or 25(OH)D3, and of the calcium deficiency and acidosis by alkaline salts of calcium and if necessary sodium bicarbonate are sufficient to cure the disease. In the case of nonaluminic ABD, the stimulation of PTH secretion by the discontinuation of 1alpha hydroxylated vitamin D and the induction of a negative calcium balance during dialysis by decreasing the calcium concentration in the dialysate will allow an increase of the CaCO3 dose to correct for hyperphosphatemia without inducing hypercalcemia. For hyperparathyroidism, i.e., plasma intact PTH levels greater than two- or four-fold the upper limit of normal levels (according to the absence or presence of previous aluminum exposure), the treatment will consist in increasing the CaCO3 dose to correct for hyperphosphatemia together with a decrease of the calcium concentration in the dialysate if the dose of CaCO3 is so high that it induces hypercalcemia. When the hyperphosphatemia has been corrected and there is still a low or normal corrected plasma calcium level, 1alpha(OH)D3 in an oral bolus 2 or 3 times a week should be given at the minimal dose of 1 microg. When the PTH level stays above 400 pg while hypercalcemia occurs and hyperphosphatemia persists, surgical subtotal parathyroidectomy is recommended or the injection of calcitriol into the big nodular hyperplastic parathyroid glands under sonography control in high surgical risk patients. Special recommendations are given for children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.