Demonstrating improved confinement of energetic ions is one of the key goals of the Wendelstein 7-X (W7-X) stellarator. In the past campaigns, measuring confined fast ions has proven to be challenging. Future deuterium campaigns would open up the option of using fusion-produced neutrons to indirectly observe confined fast ions. There are two neutron populations: 2.45 MeV neutrons from thermonuclear and beam-target fusion, and 14.1 MeV neutrons from DT reactions between tritium fusion products and bulk deuterium. The 14.1 MeV neutron signal can be measured using a scintillating fiber neutron detector, whereas the overall neutron rate is monitored by common radiation safety detectors, for instance fission chambers. The fusion rates are dependent on the slowing-down distribution of the deuterium and tritium ions, which in turn depend on the magnetic configuration via fast ion orbits. In this work, we investigate the effect of magnetic configuration on neutron production rates in W7-X. The neutral beam injection, beam and triton slowing-down distributions, and the fusion reactivity are simulated with the ASCOT suite of codes. The results indicate that the magnetic configuration has only a small effect on the production of 2.45 MeV neutrons from DD fusion and, particularly, on the 14.1 MeV neutron production rates. Despite triton losses of up to 50 %, the amount of 14.1 MeV neutrons produced might be sufficient for a time-resolved detection using a scintillating fiber detector, although only in high-performance discharges.
After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 × 1019 m−3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.
Recently a scheme for the coupling of the one-dimensional core transport code ASTRA and the two-dimensional edge transport code B2SOLPS was developed, thus providing the integrated modelling of tokamak discharge. Here, this scheme is improved by taking impurities into account and by considering a real flux surface shape using the equilibrium code SPIDER. This integrated modelling is applied to discharges of the spherical tokamak Globus-M to study the dependence of the scrape-off layer (SOL) width and divertor heat loads on the discharge power and the plasma current. Since these values, together with the magnetic field, are relatively small in Globus-M, this study can test the existing scaling against data in a wider range of tokamak operational parameters. The modelling results agree reasonably with Thomson scattering and Langmuir probe measurements and allow, in principle, the determination of the physical mechanisms responsible for the SOL structure formation. It is found that the SOL width is approximately inversely proportional to the plasma current, in agreement with existing experimental scaling, while its dependence on discharge power is found to be quite weak.
Nuclear fusion has the potential to provide humanity with a safe, clean, abundant, efficient and reliable energy source for the generations to come, but up to date finding a viable fusion reactor concept remains an ongoing area of research. One of the main difficulties to attain economically viable magnetically controlled thermonuclear fusion reactors is the confinement of α-particles. These α-particles are responsible of sustaining the extreme temperatures required for nuclear reactions, and their loss poses a serious threat to the reactor operational control and to its plasma-facing components.viii RESUMEN tre los exponentes de Hurst, estimados por las técnicas Lagrangiana y Euleriana, muestra que a medida que el nivel de simetría aumenta, el transporte se vuelve fuertemente subdifusivo. Aunque, la validez del modelo fraccionario en sí mismo se vuelve dudosa en los casos limítes de alta y baja simetría.El trabajo presentado en esta tesis puede extenderse naturalmente para estudiar la validez del modelo de transporte fraccionario en otros tipos de campos magnéticos confinantes y estudiar varios efectos relacionados con las partículas α, como colisiones, perfiles de nacimiento de las partículas α, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.