To determine the optimum conditions for Agrobacterium-mediated gene transfer, peach explants including cotyledons, embryonic axes and hypocotyl slices from non-germinated seeds and epicotyl internode slices from germinating seeds were exposed to Agrobacterium-mediated transformation treatments. The GUS (uidA) marker gene was tested using two different A. tumefaciens strains, three plasmids and four promoters [CaMV35s, (Aocs)3AmasPmas (''super-promoter''), mas-CaMV35s, and CAB]. GFP was tested with six A. tumefaciens strains, one plasmid (pLC101) and the doubleCaMV35s (dCaMV35s) promoter. The CaMV35s promoter produced more GUS expression than the CAB promoter. A. tumefaciens strains EHA105 and LBA4404 harboring the same plasmid (pBIN19) differed in their effects on GUS expression suggesting an interaction between A. tumefaciens strain and plasmid. A combination of A. tumefaciens EHA105, plasmid pBIN19 and the CaMV35s promoter produced the highest rates of transformation in peach epicotyl internodes (56.8%), cotyledons (52.7%), leaves (20%), and embryonic axes (46.7%) as evaluated by the percentage of explants expressing GUS 14 days after co-cultivation. GFP expression under the control of the dCaMV35s promoter was highest for internode explants but only reached levels of 18-19%. When GFP-containing plasmid pCL101 was combined with each of five A. tumefaciens strains the highest levels of transformation were 20-21% (internode and cotyledons, respectively). When nine peach genotypes were co-cultivated with A. tumefaciens strain EHA105 and GFP-containing plasmid pCL101 the highest levels of transformation were 26-28% (cotyledons and internodes, respectively). While GFP represents a potentially useful transformation marker that allows the non-destructive evaluation of transformation, rates of GFP transformation under the conditions of this study were low. It will be necessary to optimize expression of this marker gene in peach.Abbreviations: BA -benzyladenine; CAB -chlorophyll a/b binding protein promoter; CaMV35s -cauliflower mosaic virus promoter; GUS -beta-glucuronidase; LB -Luria Broth base; NPTII -neomycin phosphotransferase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.