Abstract. The configuration of the Pacific plate subducted beneath the Kamchatka peninsula and the stress distribution in the Kamchatka subduction zone (KSZ) were studied using the catalog of the Kamchatka regional seismic network, focal mechanism solutions estimated from P wave first motions, the formal inversion of long-period waveforms, and centroid moment tensor solutions. To the south of-55øN, the slab shows an approximately constant dip angle of -55 ø. To the north of-55øN, the dip of the slab becomes shallower reaching -35 ø. The maximum depth of seismicity, Din, varies from -500 km depth near 50øN to -300 km depth at -55øN. The volcanic front is almost linear along the main part of the KSZ whereas it is sharply shifted landward to the north of-55øN. The variation of Dm is apparently consistent with the standard empirical relation Dm --f (rp), where rp is the thermal parameter of the subducted slab.To the north of-55øN, the slab is offset toward the northwest, and it is sharply deformed in a narrow contorted zone which is -30 km wide (-56øN, -161 øE). To the north of this contortion, Dm decreases to -100 km. The landward shift of the northern part of the slab is reflected by a sharp deviation of the volcanic front to the northwest which follows the -90-160 km isodepth range of the subducted slab. The observed value of Dm in the northern segment significantly diverges from the global relation Dm --f (rp). We interpret this as an effective decrease of the thermal thickness of the subducted lithosphere.
Stations on the Australian continent receive a rich mixture of continuous ground motion with ambient seismic noise from the surrounding oceans, and numerous small earthquakes in the earthquake belts to the north in Indonesia, and east in Tonga-Kermadec, as well as more distant source zones. The ground motion at a seismic station contains information about the structure in the vicinity of the site, and this can be exploited by applying an autocorrelation procedure to the continuous records. By creating stacked autocorrelograms of the ground motion at a single station, information on crust properties can be extracted in the form of a signal that includes the crustal reflection response convolved with the autocorrelation of the combined effect of source excitation and the instrument response. After applying suitable high-pass filtering, the reflection component can be extracted to reveal the most prominent reflectors in the lower crust, which often correspond to the reflection at the Moho. Because the reflection signal is stacked from arrivals from a wide range of slownesses, the reflection response is somewhat diffuse, but still sufficient to provide useful constraints on the local crust beneath a seismic station.Continuous vertical component records from 223 stations (permanent and temporary) across the continent have been processed using autocorrelograms of running windows 6 hr long with subsequent stacking. A distinctive pulse with a time offset between 8 and 30 s from zero is found in the autocorrelation results, with frequency content between 1.5 and 4 Hz, suggesting P-wave multiples trapped in the crust. Synthetic modelling, with control of multiple phases, shows that a local p m p phase can be recovered with the autocorrelation approach. This identification enables us to make out the depth to the most prominent crustal reflector across the continent. We obtain results that largely conform to those from previous studies using a combination of data from refraction, reflection profiles and receiver functions. This approach can be used for crustal property extraction using just vertical component records, and effective results can be obtained with temporary deployments of just a few months.
A 3‐D ray‐tracing technique was used in a global tomographic inversion in order to obtain tomographic images of the North Pacific. The data reported by the Geophysical Survey of Russia (1955–1997) were used together with the catalogues of the International Seismological Center (1964–1991) and the US Geological Survey National Earthquake Information Center (1991–1998), and the recompiled catalogue was reprocessed. The final data set, used for following the inversion, contained 523 430 summary ray paths. The whole of the Earth’s mantle was parametrized by cells of 2° × 2° and 19 layers. The large and sparse system of observation equations was solved using an iterative LSQR algorithm. A subhorizontal high‐velocity anomaly is revealed just above the 660 km discontinuity beneath the Aleutian subduction zone. This high‐velocity feature is observed at latitudes of up to ~70°N and is interpreted as a remnant of the subducted Kula plate, which disappeared through ridge subduction at about 48 Ma. A further positive velocity perturbation feature can be identified beneath the Chukotka peninsula and Okhotsk Sea, extending from ~300 to ~660 km depth and then either extending further down to ~800 km (Chukotka) or deflecting along the 660 km discontinuity (Okhotsk Sea). This high‐velocity anomaly is interpreted as a remnant slab of the Okhotsk plate accreted to Siberia at ~55 Ma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.