Hereditary tyrosinemia results from an inborn error in the final step of tyrosine metabolism. The disease is known to cause acute and chronic liver failure, renal Fanconi's syndrome, and hepatocellular carcinoma. Neurologic manifestations have been reported but not emphasized as a common problem. In this paper, we describe neurologic crises that occurred among children identified as having tyrosinemia on neonatal screening since 1970. Of the 48 children with tyrosinemia, 20 (42 percent) had neurologic crises that began at a mean age of one year and led to 104 hospital admissions. These abrupt episodes of peripheral neuropathy were characterized by severe pain with extensor hypertonia (in 75 percent), vomiting or paralytic ileus (69 percent), muscle weakness (29 percent), and self-mutilation (8 percent). Eight children required mechanical ventilation because of paralysis, and 14 of the 20 children have died. Between crises, most survivors regained normal function. We found no reliable biochemical marker for the crises (those we evaluated included blood levels of tyrosine, succinylacetone, and hepatic aminotransferases). Urinary excretion of delta-aminolevulinic acid, a neurotoxic intermediate of porphyrin biosynthesis, was elevated during crises but also during the asymptomatic periods. Electrophysiologic studies in seven patients and neuromuscular biopsies in three patients showed axonal degeneration and secondary demyelination. We conclude that episodes of acute, severe peripheral neuropathy are common in hereditary tyrosinemia and resemble the crises of the neuropathic porphyrias.
Background-Aortic valve regurgitation (AR) is a volume-overload disease causing severe eccentric left ventricular (LV) hypertrophy and eventually heart failure. There is currently no approved drug to treat patients with AR. Many vasodilators including angiotensin-converting enzyme inhibitors have been evaluated in clinical trials, but although some results were promising, others were inconclusive. Overall, no drug has yet been able to improve clinical outcome in AR and the controversy remains. We have previously shown in an animal model that captopril (Cpt) reduced LV hypertrophy and protected LV systolic function, but we had not evaluated the clinical outcome. This protocol was designed to evaluate the effects of a long-term Cpt treatment on survival in the same animal model of severe aortic valve regurgitation. Methods and Results-Forty Wistar rats with AR were treated or untreated with Cpt (1 g/L in drinking water) for a period of 7 months to evaluate survival, myocardial remodeling, and function by echocardiography as well as myocardial metabolism by µ positron emission tomography scan. Survival was significantly improved in Cpt-treated animals with a survival benefit visible as soon as after 4 months of treatment. Cpt reduced LV dilatation and LV hypertrophy. It also significantly improved the myocardial metabolic profile by restoring the level of fatty acids metabolic enzymes and use. Conclusions-In a controlled animal model of pure severe aortic valve regurgitation, Cpt treatment reduced LV remodeling and LV hypertrophy and improved myocardial metabolic profile and survival. These results support the need to reevaluate the role of angiotensin-converting enzyme inhibitors in humans with AR in a large, carefully designed prospective clinical trial. (Circ Heart Fail. 2013;6:1021-1028.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.