A coupled air-sea mode in the Northern Hemisphere with a period of about 35 years is described. The mode was derived from a multicentury integration with a coupled ocean-atmosphere general circulation model and involves interactions of the thermohaline circulation with the atmosphere in the North Atlantic and interactions between the ocean and the atmosphere in the North Pacific.The authors focus on the physics of the North Atlantic interdecadal variability. If, for instance, the North Atlantic thermohaline circulation is anomalously strong, the ocean is covered by positive sea surface temperature (SST) anomalies. The atmospheric response to these SST anomalies involves a strengthened North Atlantic Oscillation, which leads to anomalously weak evaporation and Ekman transport off Newfoundland and in the Greenland Sea, and the generation of negative sea surface salinity (SSS) anomalies. These SSS anomalies weaken the deep convection in the oceanic sinking regions and subsequently the strength of the thermohaline circulation. This leads to a reduced poleward heat transport and the formation of negative SST anomalies, which completes the phase reversal.The Atlantic and Pacific Oceans seem to be coupled via an atmospheric teleconnection pattern and the interdecadal Northern Hemispheric climate mode is interpreted as an inherently coupled air-sea mode. Furthermore, the origin of the Northern Hemispheric warming observed recently is investigated. The observed temperatures are compared to a characteristic warming pattern derived from a greenhouse warming simulation with the authors' coupled general circulation model and also with the Northern Hemispheric temperature pattern associated with the 35-yr climate mode. It is shown that the recent Northern Hemispheric warming projects well onto the temperature pattern of the interdecadal mode under consideration.
In this paper a decadal climate cycle in the North Atlantic that was derived from an extended-range integration with a coupled ocean-atmosphere general circulation model is described. The decadal mode shares many features with the observed decadal variability in the North Atlantic. The period of the simulated oscillation, however, is somewhat longer than that estimated from observations. While the observations indicate a period of about 12 yr, the coupled model simulation yields a period of about 17 yr. The cyclic nature of the decadal variability implies some inherent predictability at these timescales. The decadal mode is based on unstable air-sea interactions and must be therefore regarded as an inherently coupled mode. It involves the subtropical gyre and the North Atlantic oscillation. The memory of the coupled system, however, resides in the ocean and is related to horizontal advection and to the oceanic adjustment to low-frequency wind stress curl variations. In particular, it is found that variations in the intensity of the Gulf Stream and its extension are crucial to the oscillation. Although differing in details, the North Atlantic decadal mode and the North Pacific mode described by M. Latif and T. P. Barnett are based on the same fundamental mechanism: a feedback loop between the wind driven subtropical gyre and the extratropical atmospheric circulation.
The role of anomalous Indian Ocean sea surface temperature (SST) in forcing east African rainfall anomalies during December-January 1997/98 has been investigated by means of atmospheric model response experiments. It is shown that the strong precipitation anomalies that led to severe flooding over eastern equatorial Africa can be directly related to the contemporaneous changes in the Indian Ocean's SST. The authors' set of ensemble experiments prescribing SST anomalies in different ocean basins indicates further that the El Niñ o-related SST anomalies in the equatorial Pacific did not directly drive the changes in the climate over eastern Africa.
The predictability of the coupled ocean-atmosphere climate system on interannual to decadal timescales has been studied by means of ensemble forecast experiments with a global coupled ocean-atmosphere general circulation model. Over most parts of the globe the model's predictability can be sufficiently explained by damped persistence as expected from the stochastic climate model concept with damping times of considerably less than a year. Nevertheless, the tropical Pacific and the North Atlantic Ocean exhibit oscillatory coupled ocean-atmosphere modes, which lead to longer predictability timescales. While the tropical mode shares many similarities with the observed ENSO phenomenon, the coupled mode within the North Atlantic region exhibits a typical period of about 30 yr and relies on an interaction of the oceanic thermohaline circulation and the atmospheric North Atlantic oscillation. The model's ENSO-like oscillation is predictable up to one-third to onehalf (2-3 yr) of the oscillation period both in the ocean and the atmosphere. The North Atlantic yields considerably longer predictability timescales (of the order of a decade) only for quantities describing the model's thermohaline circulation. For surface quantities and atmospheric variables only marginal predictability (of the order of a year) was obtained. The predictability of the coupled signal at the surface is destroyed by the large amount of internally generated (weather) noise. This is illustrated by means of a simple conceptual model for coupled oceanatmosphere variability and predictability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.