This work was conducted on Pinctada maxima nacre (mother of pearl) in order to understand its multiscale ordering and the role of the organic matrix in its structure. Intermittent-contact atomic force microscopy with phase detection imaging reveals a nanostructure within the tablet. A continuous organic framework divides each tablet into nanograins. Their shape is supposed to be flat with a mean extension of 45nm. TEM performed in the darkfield mode evidences that at least part of the intracrystalline matrix is crystallized and responds like a 'single crystal'. The tablet is a 'hybrid composite'. The organic matrix is continuous. The mineral phase is thus finely divided still behaving as a single crystal. It is proposed that each tablet results from the coherent aggregation of nanograins keeping strictly the same crystallographic orientation thanks to a hetero-epitaxy mechanism. Finally, high-resolution TEM performed on bridges from one tablet to the next, in the overlying row, did not permit to evidence a mineral lattice but crystallized organic bridges. The same organic bridges were evidenced by SEM in the interlaminar sequence.
Pyrocarbon materials containing various amounts of boron have been prepared by LPCVD from BCl 3 -C 3 H 8 -H 2 precursor mixtures. The growth rate is increased with respect to pure pyrocarbon deposition. By increasing BCl 3 / (C 3 H 8 + BCl 3 ) ratio up to 85%, the incorporation of boron can reach 33 at.%. A small amount of boron (e.g. 8 at.%) highly enhances the anisotropy of pyrocarbon, as evidenced by optical microscopy, X-ray diffraction and transmission electron microscopy (selected area diffraction and lattice fringes techniques). X-ray photoelectron spectroscopy has shown that a large fraction of the boron atoms are included by substitution in the carbon layers, the remaining boron atoms belongs to a boron-rich amorphous part of the material. As boron content increases beyond 8 at.%, the anisotropy of the boron-rich pyrocarbon decreases, due to the limited growth and stacking of the carbon layers. Also, amorphous boron-rich regions are more and more abundant as the total amount of boron increases. The oxidation resistance of the C(B) materials is better than that of pure pyrocarbon. It is mainly due to the improvement of the structural organization for the low boron content materials and to the coating of the whole material with a stable boron oxide for materials with a higher boron content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.