Currently, superparamagnetic functionalized systems of magnetite (Fe3O4) nanoparticles (NPs) are promising options for applications in hyperthermia therapy, drug delivery and diagnosis. Fe3O4 NPs below 20 nm have stable single domains (SSD), which can be oriented by magnetic field application. Dispersion of Fe3O4 NPs in silicon dioxide (SiO2) matrix allows local SSD response with uniaxial anisotropy and orientation to easy axis, 90° <001> or 180° <111>. A successful, easy methodology to produce Fe3O4 NPs (6–17 nm) has been used with the Stöber modification. NPs were embedded in amorphous and biocompatible SiO2 matrix by mechanical stirring in citrate and tetraethyl orthosilicate (TEOS). Fe3O4 NPs dispersion was sampled in the range of 2–12 h to observe the SiO2 matrix formation as time function. TEM characterization identified optimal conditions at 4 h stirring for separation of SSD Fe3O4 in SiO2 matrix. Low magnetization (Ms) of 0.001 emu and a coercivity (Hc) of 24.75 Oe indicate that the embedded SSD Fe3O4 in amorphous SiO2 reduces the Ms by a diamagnetic barrier. Magnetic force microscopy (MFM) showed SSD Fe3O4 of 1.2 nm on average embedded in SiO2 matrix with uniaxial anisotropy response according to Fe3+ and Fe2+ electron spin coupling and rotation by intrinsic Neél contribution.
In the pulsed laser deposition of thin films, plasma parameters such as energy and density of ions play an important role in the properties of materials. In the present work, cadmium telluride thin films were obtained by laser ablation of a stoichiometric CdTe target in vacuum, using two different values for: substrate temperature (RT and 200 °C) and plasma energy (120 and 200 eV). Structural characterization revealed that the crystalline phase can be changed by controlling both plasma energy and substrate temperature; which affects the corresponding band gap energy. All the thin films showed smooth surfaces and a Te rich composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.