The impact of 11 alloying elements, namely, Mg, Ti, In, Sn, Al, Ag, Co, Nb, and B, at two nominal concentrations of 1 and 3 at. %, and Ir and W, at only a nominal concentration of 3 at. %, on the resistivity and grain structure of copper was investigated. The films were electron beam evaporated onto thermally oxidized Si wafers and had thicknesses in the range of 420–560 nm. Pure evaporated Cu films were used as controls. Isothermal anneals were carried out at 400 °C for 5 h; constant-heating rate treatments, with no hold at the temperature, were done at 3 °C to 650 and 950 °C. In all cases, annealing resulted in the lowering of resistivity compared with the as-deposited state. Furthermore, annealing to a higher temperature resulted in lower, postannealing, room-temperature resistivity, unless the film agglomerated or showed evidence of solute redissolution. Annealing also resulted in significant growth of grains, except for the Nb- and W-containing films. In addition, the grain sizes for the nominally 3 at. %, 400 °C-annealed films were smaller than those for the nominally 1.0 at. % films. The interesting exceptions in this case were the Co-containing films, which had a larger grain size than the pure Cu film, and which, in addition, exhibited a larger grain size for the film with the higher concentration of Co. After the 400 °C anneal, Cu(0.4B) and Cu(1.0Ag) had the lowest resistivities at 2.0 and 2.1 μΩ cm, respectively, and Cu(2.8Co) showed the largest average grain size at 1080 nm. The resistivity and grain size for the pure Cu film after the same anneal were 2.0 μΩ cm and 790 nm, respectively. Precipitation of a second phase was observed in 8 of 20 alloy films annealed at 400 °C. No alloy film simultaneously showed the combination of a low resistivity and a larger grain size than pure Cu.