For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).
ABSTRACT:The point cloud interpretation and reconstruction of 3d-buildings from point clouds has already been treated for a few decades. There are many articles which consider the different methods and workows of the automatic detection and reconstruction of geometrical objects from point clouds. Each method is suitable for the special geometry type of object or sensor. General approaches are rare. In our work we present an algorithm which develops the optimal process sequence of the automatic search, detection and reconstruction of buildings and building components from a point cloud. It can be used for the detection of the set of geometric objects to be reconstructed, independent of its destruction. In a simulated example we reconstruct a complete Russian-orthodox church starting from the set of detected structural components and reconstruct missing components with high probability.
Switzerland and he now leads the 3D Optical Metrology unit (http://3dom.fbk.eu) of the Bruno Kessler Foundation (http://www.fbk.eu), a public research center in Trento, Italy. His research interests include geospatial data collection and processing, heritage documentation, 3D modelling, sensor and data integration. He is author of over 200 scientific publications in journals and at international conferences, 7 books, 8 book chapters, 8 special issues in journals and 15 conference proceedings. He has received 10 best paper awards at conferences and organized more than 25 scientific events, 20 summer schools and 10 tutorials. He is serving as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.