Until recently, sequence stratigraphic models have attributed systems tracts to periods of relative sea-level rise, highstand and lowstand. Recognition of a discrete phase of deposition during relative sea-level fall has been limited to a few studies, both in clastic and carbonate systems. Our work in siliciclastic ramp settings suggests that deposition during relative sea-level fall produces a distinctive falling stage systems tract (FSST), and that this is the logical counterpart to the transgressive systems tract. The FSST lies above and basinward of the highstand systems tract, and is overlain by the lowstand systems tract. The FSST is characterized by stratal offlap, although this is likely to be difficult or impossible to recognize because of subsequent subaerial or transgressive ravinement erosion. The most practical diagnostic criteria of the FSST is the presence of erosive-based shoreface sandbodies in nearshore areas. The erosion results from wave scouring during relative sealevel fall, and the stratigraphically lowest surface defines the base of the FSST. Further offshore, shoaling-upward successions may be abruptly capped by gutter casts filled with HCS sandstone, reflecting increased wave scour on the shelf during both FSST and LST time. The top of the FSST is defined by a subaerial surface of erosion which corresponds to the sequence boundary. This surface becomes a correlative submarine conformity seaward of the shoreline, where it forms the base of the lowstand systems tract. Differentiation of the FSST and LST may be difficult, but the LST is expected to contain gradationally-based shoreface successions because it was deposited when relative sea level was rising. Internally, the FSST may be an undifferentiated body of sediment or it may be punctuated by internal regressive surfaces of marine erosion and ravinement surfaces which record higherfrequency sea-level falls and rises superimposed on a lower-frequency sea-level fall. The corresponding higher-order sequences are the building blocks of lower-order sequences. The addition of a falling stage systems tract results in a significant reduction in the proportion of strata within a sequence that are assigned to the classical highstand and lowstand systems tracts.Many outcrop and subsurface cross-sections use an overlying ravinement, or maximum flooding surface as datum. Those surfaces might be flat, but they are not horizontal. Both dip seaward at slopes that generally are steeper than the fluvial system responsible for creating the sequence boundary. When a section is restored to such a datum, the falling stage systems tract will appear to record stratigraphic climb, whereas in fact it does not. The issue of systems tractsand elaborated by Historical perspective7ho Partitioned depositional sequences into r Before presenting our reasons for suggesting the lowstand and shelf margin. Lowstand and shelf formalization of a falling stage systems tract, it is margin systems tracts can be considered as variappropriate to review briefly the e...
Determining sediment transport direction in ancient mudrocks is difficult. In order to determine both process and direction of mud transport, a portion of a well-mapped Cretaceous delta system was studied. Oriented samples from outcrop represent prodelta environments from ca 10 to 120 km offshore. Oriented thin sections of mudstone, cut in three planes, allowed bed microstructure and palaeoflow directions to be determined. Clay mineral platelets are packaged in equant, face-face aggregates 2 to 5 lm in diameter that have a random orientation; these aggregates may have formed through flocculation in fluid mud. Cohesive mud was eroded by storms to make intraclastic aggregates 5 to 20 lm in diameter. Mudstone beds are millimetre-scale, and four microfacies are recognized: Wellsorted siltstone forms millimetre-scale combined-flow ripples overlying scoured surfaces; deposition was from turbulent combined flow. Siltstreaked claystone comprises parallel, sub-millimetre laminae of siliceous silt and clay aggregates sorted by shear in the boundary layer beneath a wave-supported gravity flow of fluid mud. Silty claystone comprises fine siliceous silt grains floating in a matrix of clay and was deposited by vertical settling as fluid mud gelled under minimal current shear. Homogeneous clay-rich mudstone has little silt and may represent late-stage settling of fluid mud, or settling from wave-dissipated fluid mud. It is difficult or impossible to correlate millimetre-scale beds between thin sections from the same sample, spaced only ca 20 mm apart, due to lateral facies change and localized scour and fill. Combined-flow ripples in siltstone show strong preferred migration directly down the regional prodelta slope, estimated at ca 1 : 1000. Ripple migration was effected by drag exerted by an overlying layer of downslope-flowing, wave-supported fluid mud. In the upper part of the studied section, centimetre-scale interbeds of very fine to fine-grained sandstone show wave ripple crests trending shore normal, whereas combined-flow ripples migrated obliquely alongshore and offshore. Storm winds blowing from the north-east drove shore-oblique geostrophic sand transport whereas simultaneously, wave-supported flows of fluid mud travelled downslope under the influence of gravity. Effective wave base for sand, estimated at ca 40 m, intersected the prodelta surface ca 80 km offshore whereas wave base for mud was at ca 70 m and lay ca 120 km offshore. Small-scale bioturbation of mud beds co-occurs with interbedded sandstone but stratigraphically lower, sand-free mudstone has few or no signs of benthic fauna. It is likely that a combination of soupground substrate, frequent storm emplacement of fluid mud, low nutrient availability Sedimentology (2014) 61, 609-647 and possibly reduced bottom-water oxygen content collectively inhibited benthic fauna in the distal prodelta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.