The storage protein hordein contains two major groups of polypeptides which are highly polymorphic in barley, and in its evolutionary progenitor Hordeum spontaneum Koch. Crosses between the two species showed that the complex electrophoretic phenotypes within the two groups of polypeptides are governed by codominant alleles at two corresponding loci, Hor-1 and Hor-2, which are moderately linked (11% ± 2). In natural populations of the wild species, the two complex hordein loci were much more polymorphic than the allozyme loci. Furthermore, the variation at these two loci was highly correlated so that individuals differ from one another at both loci much more frequently than expected from the allele frequencies at the individual loci. Considerable hordein variation was also present in Composite Cross XXI, and there was evidence of reassortment of patterns by the seventeenth generation. Thus the complex hordein loci, with their extreme diversity and linkage disequilibrium, are ideal markers for monitoring evolutionary processes in both natural, or composite cross populations.
SUMMARYThe selective forces responsible for the evolution of gametophytic apomixis in outbreeding plant populations are analysed in terms of a simple single gene model. In the absence of selection, apomixis inevitably becomes fixed in a population. This conclusion holds regardless of the dominance relations of the alleles specifying apomictic versus sexual seed formation. Substantial heterotic viability selection is required to prevent fixation of recessive and codominant apomictic alleles and maintain a stable polymorphism at the mating system locus. These findings suggest that gametophytic apomixis should be a common mode of reproduction in plant species. Possible factors accounting for the relative paucity of apomictic plants are discussed. It is concluded that one of the major factors hindering the spread of apomixis is its usually complex inheritance and the need to accumulate, in the one individual, two or more mutations affecting meiosis and the reproductive system.
Different patterns of resistance to six pathotypes of Melampsora lini were detected in 11 populations of Linum marginale distributed across two metapopulations. The two metapopulations (mountains and plains of New South Wales, Australia) differed in the annual cycle of disease development, which barely overlapped, and in the growth cycle and mating system of the host. Host populations in the mountains metapopulation were highly inbred, whereas those on the plains showed appreciable levels of outcrossing. Within each metapopulation there was significant variation among component populations in (1) levels of host resistance to individual pathogen isolates; (2) mean levels of resistance to all six isolates; (3) the number of resistance phenotypes present and the evenness of their distribution within the population; and (4) the average number of pathogen lines to which individual hosts were resistant. A more limited comparison of pathogen populations from the two metapopulations (two from each) found greater similarities in the structure of populations and particular virulence frequencies within, rather than among, the two metapopulations. Differences in host outcrossing rates between the two metapopulations are reflected in marked differences in the overall level of resistance, its partitioning within and among populations, the number and distribution of resistance phenotypes in the two areas, and the level of polymorphism for specific virulence factors in the pathogen, with the plains meta population showing consistently higher values. However, these differences were not significant. In general, variation for all parameters was just as great among populations within a metapopulation as between the two metapopulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.