A three‐dimensional, two‐phase computational model for simulating boiling‐enhanced mixed convection in free‐surface flows is presented. The associated constitutive models for the thermophysical and transport properties are described. A computational model incorporating the discrete‐element analysis was used to simulate the multi‐dimensional, two‐phase flow around a heated chip in a test tank filled with Freon‐(R113). Two and three‐dimensional simulations of both natural convection and nucleate boiling heat transfer regimes are presented. The velocity field, the temperature distribution, and the vapour concentration profiles are evaluated and discussed. The simulated heat fluxes are compared with the available experimental data. While the heat fluxes from the two‐dimensional simulation agree with the fluxes calculated for the three‐dimensional case, the flow in the tank is essentially three‐dimensional. The results show that there are secondary flows which cannot be captured by a two‐dimensional model. The heat flux in the boiling heat transfer regime is only about ten times larger than that in the natural convection regime due to the small vapour concentration in tank.
The general mathematical problem of MHD thermal entrance regions is formulated for a parallel plate channel by including Joule heating, viscous dissipation, and the effect of axial conduction. The associated eigenvalue problem is solved by the B. G. Galerkin method and the results are presented for constant wall temperature and constant wall heat flux conditions. It is shown that the particular method has distinct computational advantages over the classical form of solutions. The constant wall temperature case is investigated by employing the solutions of the eigenvalue problem and it is concluded that the axial conduction has considerable effect on the temperature development for low values of Peclet number.
TM* report ma* piepaied at an account of work tpocaoroc by the United States Government. Neittier the United Stetai nor the cnerojy rVMeerch and Davalopaiant Adminiw alien/United Stat* Nudaar PJepiletoi > Cowwniiiiun. nor any of their amplo»ew. nor any of their contractor*, subcontractors, or their amnio>eai. mrfcat any warranty, express or implied, or assumes any lap* liability or responsibility tor the accuracy, osmpletanoBs or usefulness of any information, apparatus. product or process dBdosed. or represents that its uea would not infrmee prrtototy owned rejhts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.