The value of the traceability and labeling of food is attributable to two main aspects: health safety and/or product or process certification. The identification of the species related to meat production is still a major concern for economic, religious and health reasons. Many approaches and technologies have been used for species identification in animal feedstuff and food. The early methods for meat products identification include physical, anatomical, histological and chemical. Since 1970, a variety of methods were developed, these include electrophoresis (i.e. isoelectrofocusing), chromatography (i.e. HPLC), immunological techniques (i.e. ELISA), Nuclear Magnetic Resonance, Mass Spectrometry and PCR (DNA and RNA based methods). The recent patents on species detection in animal feedstuffs, raw meat and meat processed products, listed in this work, are mainly based on monoclonal antibodies and PCR, especially RT-PCR. The new developments under research are looking for more sensible, specific, less time consuming and quantitatively detection methods, which can be used in highly processed or heated treated meat food.
Summary Polledness has been shown to have autosomal Mendelian inheritance, with the polled locus being dominant to the horned locus. This trait was mapped to the BTA1 centromeric end in several breeds. One of the distinctive attributes of Creole cattle, such as the Argentinean Creole, is the presence of long, lyre‐shaped horns. However, polled native animals were reported before the introduction of modern selected European breeds. Here, we studied the origin of the polled mutation, either independent or introgressed, in a Creole line from the Creole cattle founder group at the IIACS‐INTA Leales Experimental Station (northwest Argentina). The study sample (65 animals: 26 horned and 39 polled) was genotyped using high‐density SNP microarrays and three previously reported genetic markers (P202ID, P80kbID and PG). A genome‐wide association study, selection signatures, linkage disequilibrium analysis and copy number variations were used to detect the responsible region and the segregating haplotypes/alleles. The interval mapped in the Leales herd (1.23–2.13 Mb) overlapped with the region previously reported in several European cattle breeds, suggesting that the same locus could be segregating in this population. The previously reported variants PF and PG were not detected, thus dismissing the Holstein‐Friesian and Nellore origins of the polled phenotype in this native breed. Conversely, the presence of the Celtic variant PC suggests an almost complete co‐segregation. The cluster analysis rejected the hypothesis of recent introgression, which is compatible with the historical record of polled Creole cattle in northwest Argentina.
The development of high-throughput technologies in the last decade produced an exponential increase in the amount of biological data available. The case of redox biology and apoptosis is not an exception, and nowadays there is a need to integrate information from multiple "omics" studies. Therefore, validation of proposed discoveries is essential. However, the study in biological systems of the effect of the massive amounts of sequence variation data generated with next-generation sequencing (NGS) technologies can be a very difficult and expensive process. In this context, the present study aimed to demonstrate the advantages of a computational methodology to systematically analyze the structural and functional effects of protein variants, in order to prioritize further studies. This approach stands out for its easy implementation, low costs and low time consumed. First, the possible impact of mutations on protein structure and function was tested by a combination of tools based on evolutionary and structural information. Next, homology modeling was performed to predict and compare the 3D protein structures of unresolved amino acid sequences obtained from genomic resequencing. This analysis applied to the bovine GSTP1 allowed to determine that some of amino acid substitutions may generate important changes in protein structure and function. Moreover, the haplotype analysis highlighted three structure variants worthwhile studying through in vitro or in vivo experiments.
In Bolivia, beef production is mainly based on two genotypes, Bos taurus (Creole cattle) and B. indicus (zebu), being weight gain the main selection criteria used by farmers. However, meat quality and especially tenderness must be incorporated in the selection process. Meat tenderness is partly determined by the calpain CAPN1)/ calpastatin (CAST) protein system. Thus, the objective of the present work was to determine and (compare the genetic variability of the CAPN1 gene in Creole (CreBo), Brahman (BraBo) and Nellore (NelBo) breeds in Bolivia. DNA was extracted from blood samples from 147 CreBo, 59 BraBo and 93 NelBo, and three polymorphisms were genotyped using ARMSPCR (CAPN1316 and CAPN14751) and PCRRFLP (CAPN1530). Furthermore, CAPN1316 and CAPN14751 SNPs were analyzed with Axiom™ Bos 1 Genotyping Array r3 and the Axiom™ ArBos 1 Genotyping Array. Allele frequencies associated with higher tenderness in CreBo, BraBo and NelBo were 0.22, 0 and 0.09 (CAPN1316 C; P < 0.001), 0.76, 0.16 and 0.08 (CAPN14751 C; P < 0.001), and 0.77, 0.92 and 0.94 (CAPN1530 G; P < 0.001). Linkage disequilibrium (LD) analysis revealed the presence of two LD blocks. Our results evidence that CreBo has a higher frequency of alleles associated with higher meat tenderness than the cebuine breeds. These markers could be used in breeding programs to improve Bolivian cattle herd meat quality either by selection within Creole breeds or crosses with cebuine cattle
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.