This paper introduces the concept of TwoDimensional Optical Storage (TwoDOS). In this concept, bits are written in a broad spiral consisting of a number of bitrows stacked together in a hexagonal packing. Bits with a value '1' are represented physically as circular pit-holes on the disc, while bits with a value '0' are characterized by the absence of such a pit-hole. A scalar diffraction model is used to calculate the signal levels for various diameters of the pits. A stripe-wise Viterbi detector is proposed to perform 2D bit-detection with a limited state complexity of the trellis. Simulation results are shown for various diameters of the pits. A 2D modulation code is applied to eliminate patterns that yield a high probability of erroneous detection.
This paper discusses several issues related to adaptation and timing recovery for two-dimensional (2D) optical storage. In the TwoDOS format bits are stored on a 2D hexagonal lattice which is formed by recording multiple bit rows with a fixed phase relation in a so-called broad spiral or meta-spiral. Besides a large increase in data rate by reading out with multiple spots, also a density increase by a factor of two compared to Blu-ray Disc is targeted. To increase the storage density, 2D signal processing is proposed including 2D PRML detection in the form of a stripe-wise Viterbi detector. This detector introduces an increasing detection delay when going from the outer rows towards the center of the broad spiral. For fast control loops in a decision-directed mode, special measures are needed to avoid instability due to this delay. Another issue is the large span of the 2D inter-symbol interference at higher densities and tilt, leading to a large 2D equalizer. Furthermore, in case the broad spiral is recorded with a multiple-pass mastering technology (e.g. for ROM TwoDOS discs), write-channel imperfections such as time-varying lattice distortion require independent timing recovery on each row within the broad spiral.
With storage capacities increasing much faster than data rates, fast read-out of content is becoming a bottleneck for the convenient use of optical storage devices. Two-Dimensional Optical Storage (TwoDOS) is a new concept that solves this data-rate problem by using a multi-spot parallel readout system. In addition, the storage capacity is increased with a factor of at least 2. Using the same read-out physics as in the Blu-ray Disc standard, single layered 12 cm discs with capacities up to 50 GB have been read out successfully at bit-rates as high as 560 Mbit/sec. Basic pillars of TwoDOS are advanced signal processing and disc mastering techniques, and a proper design of the optical path.
In high-density data storage systems, noise becomes highly correlated and data dependent as a result of media noise, channel nonlinearities, and front-end filters. In such environments, conventional timing recovery schemes will exhibit large residual timing jitter and, especially, data-dependent timing jitter. This paper presents a new data-aided timing recovery algorithm for data storage systems with data-dependent noise. We derive a maximum-likelihood timing recovery scheme based on a data-dependent Gauss-Markov model of the noise. The timing recovery algorithm incorporates data-dependent noise prediction parameters in the form of linear prediction filters and prediction error variances. Moreover, because noise can be nonstationary in practice, we propose an adaptive algorithm to estimate and track the noise prediction parameters. Simulation results, for an idealized optical storage channel incorporating a simple model of media noise, illustrate the merits of our algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.