Soft rot erwiniae are a group of notorious plant pathogens for which currently available detection methods are inadequate. Based on the polymerase chain reaction, specific and sensitive detection of Erwinia carotovora subsp. atroseptica and E. chrysanthemi in potato tubers has been achieved. The composition of the PCR primers used in two specific detection systems is based on identification of the consensus of sequences of metalloprotease‐coding genes present in soft rot erwiniae. Bacterial DNA was extracted from the potato tuber matrix by differential centrifugation in order to avoid interference of potato‐derived compounds with the performance of the PCR assay. The PCR assay jjerformed with the E. carotovora subsp. atroseptica specific primer set was found to be capable of distinguishing E. carotovora subsp. atroseptica from all other Erwinia species and the closely related subspecies E. carotovora subsp. carotovora. With the E. chrysanthemi specific primer set, agarose gel electrophoresis is required for unequivocal differentiation between E. chrysanthemi and other erwiniae. Combined with the efficient extraction procedure, the assay allowed specific detection of less than 103 culturable erwiniae per tuber. The specificity and sensitivity of the assay were not reduced in the presence of a 100‐fold excess of DNA from both related and unrelated bacteria. This PCR‐based method for detection of erwiniae in potato tubers provides a relatively fast and sensitive alternative to routinely applied serological methods.
The in planta induction of anaerobic nitrate respiration by Erwinia carotovora subsp. atroseptica in relation to the in situ oxygen status in soft rotting potato tubers has been investigated. In vitro experiments have shown that nitrate was required for the induction of respiratory nitrate reductase activity in E. carotovora. In addition, oxygen was found to repress this activity. Expression of respiratory nitrate reductase was found in E. carotovora cells extracted from soft rotting potato tuber tissue. However, the rate of nitrite production in these cells was approximately 70-fold lower than the rate recorded in fully induced anaerobic cultures. Oxygen measurements in soft rotting potato tubers indicated that the invading bacteria encounter the lowest oxygen concentration at the interphase between healthy and macerated tissue. Consequently, growth of bacteria present in this specific zone will be stimulated by nitrate which is present in sufficient amounts in tuber tissue. A high nitrate content of the tuber will most likely facilitate the proliferation ofE. carotovora in the tuber tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.