The purpose of this paper is twofold. In §1 and §2 which are largely expository we develop the known theory of ℵ1-categoricity in terms of strongly minimal sets. In §3 we settle affirmatively Vaught's conjecture that a complete ℵ1-categorical theory has either just one or just ℵ0 countable models, and in §4 we present an example which serves to illustrate the ideas of §3.As far as we know the only work published on strongly minimal sets is that of Marsh [3]. The present exposition goes beyond [3] in showing that any ℵ-categorical theory has a principal extension in which some formula is strongly minimal.
Given a resplendent model for Peano arithmetic there exists a full satisfaction class over , i.e. an assignment of truth-values, to all closed formulas in the sense of with parameters from , which satisfies the usual semantic rules. The construction is based on the consistency of an appropriate system of -logic which is proved by an analysis of standard approximations of nonstandard formulas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.