Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.
We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beamline capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally-separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility.
We report the first measurements of the electron-beam microbunching z dependence in a self-amplified spontaneous-emission (SASE) free-electron laser (FEL) experiment by the observation of visible wavelength coherent transition radiation (CTR). In this case the fundamental SASE wavelength was at 537 nm, and the CTR exhibited an exponential intensity growth similar to the SASE radiation. In addition, we observed for the first time structure in the CTR angular distribution patterns that may be useful for optimizing SASE FEL performance.
We report the first unambiguous demonstration of near-field imaging of optical diffraction radiation (ODR). The source of the ODR was an aluminum metal reflective surface with a 7-GeV electron beam passing nearby its single edge. Because of the high Lorentz factor involved, appreciable ODR is emitted at visible wavelengths even for impact parameters of 1 to 2 mm, so standard imaging techniques were employed. The experimental results are compared to a simple near-field model. We show that the ODR signals are sensitive to both beam size and position. Applications to multi-GeV beams in transport lines in the major synchrotron radiation facilities, x-ray free-electron lasers, energy recovering linacs, and the International Linear Collider are possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.