In this study, the buckling analysis of cylindrical shells made of functionally graded materials (FGMs) under the torsional moment resting on the Pasternak-type soil is performed. After establishing the linear constitutive relations of FGM cylindrical shells within the framework of the modified Donnell type shell theory, the governing equations of FGM cylindrical shells under the torsional moment are derived considering the influence of Pasternak-type soil. Analytical formula for the torsional moment is obtained by choosing the approximation functions that satisfies the boundary conditions in an integral sense. From the obtained formula, the formulas for the critical torsional moment in the presence of Winkler soil and absence of soils are obtained as a special case. Variations of critical torsional moment for different soil coefficients, volume fraction ratio and shell characteristics are investigated in detail. Keywords: functionally graded materials; cylindrical shell; buckling; critical torsional moment; Pasternak-type soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.