In modulus measurement by depth-sensing indentation, previous considerations assume elastic recovery to be the sole process during unloading, but in reality creep and thermal drift may also occur, causing serious errors in the measured modulus. In this work, the problem of indentation on a linear viscoelastic half-space is solved using the correspondence principle between elasticity and linear viscoelasticity. The correction term due to creep in the apparent contact compliance is found to be equal to the ratio of the indenter displacement rate at the end of the load hold to the unloading rate. A condition for nullifying the effect of thermal drift on modulus measurement is also proposed. With this condition satisfied, the effect of thermal drift on the calculated modulus is negligible irrespective of the magnitude of the drift rate.
Polypropylene (PP) and amorphous selenium (a-Se) were used as prototype materials at room temperature to explore the problems that may exist in the accurate measurement of the reduced modulus of viscoelastic materials using depth-sensing nanoindentation. As has been reported previously by others, we observed that a "nose" in the load-displacement curve may occur during unloading, indicating significant creep effects at the onset of unloading. To accurately measure the elastic modulus in viscoelastic materials like PP or a-Se, both the contact stiffness and the contact area at the onset of unloading must be determined accurately. The issue of removing the influence of creep on the measurement of the contact stiffness using the Oliver-Pharr method has been addressed in a previous paper by Feng and Ngan. In this work, the effect of creep on contact-depth measurement is considered. Removal of creep effects in both contact stiffness and contact-area measurement leads to satisfactory prediction of the reduced moduli in PP and a-Se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.