Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca oscillations in eggs and debilitating mutations in the gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca oscillations in eggs. Here, we show that sperm derived from male mice fail to trigger Ca oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.
Mammalian fertilization encompasses a series of Ca2+ oscillations initiated by the sperm factor phospholipase C zeta (PLCζ). Some studies have shown that altering the Ca2+ oscillatory regime at fertilization affects pre-implantation blastocyst development. However, assisted oocyte activation (AOA) protocols can induce oocyte activation in a manner that diverges profoundly from the physiological Ca2+ profiling. In our study, we used the newly developed PLCζ-null-sperm to investigate the independent effect of AOA on mouse pre-implantation embryogenesis. Based on previous findings, we hypothesised that AOA protocols with Ca2+ oscillatory responses might improve blastocyst formation rates and differing Ca2+ profiles might alter blastocyst transcriptomes. A total of 326 MII B6D2F1-oocytes were used to describe Ca2+ profiles and to compare embryonic development and individual blastocyst transcriptomes between four control conditions: C1 (in-vivo fertilization), C2 (ICSI-control sperm), C3 (parthenogenesis) and C4 (ICSI-PLCζ-KO sperm) and four AOA groups: AOA1 (human recombinant PLCζ), AOA2 (Sr2+), AOA3, (ionomycin) and AOA4 (TPEN). All groups revealed remarkable variations in their Ca2+ profiles; however, oocyte activation rates were comparable between the controls (91.1±13.8%) and AOA (86.9±11.1%) groups. AOA methods which enable Ca2+ oscillatory responses (AOA1: 41% and AOA2: 75%) or single Ca2+ transients (AOA3: 50%) showed no significantly different blastocyst rates compared to ICSI control group (C2: 70%). In contrast, we observed a significant decrease in compaction (53% vs. 83%) and blastocyst rates (41% vs. 70%) in the absence of an initial Ca2+ trigger (AOA4) compared with the C2 group. Transcription profiles did not identify significant differences in gene expression levels between the ICSI control group (C2) and the four AOA groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.