Abstract. Buildings are one of the key components in change detection, urban planning, and monitoring. The automatic extraction of the building from high-resolution aerial imagery is still challenging due to the variations in their shapes, structures, textures, and colours. Recently, the convolutional neural networks (CNN) show a significant improvement in object detection and extraction that surpasses other methods. To extract building, in this paper two segmentation architectures, the UNet and the Inception ResNet UNet are implemented and then tested on the Inria aerial image datasets. The Inception ResNet UNet utilizes the Inception architecture and residual blocks. This makes the model wide and deep, though there are a few differences between numbers of UNet and Inception ResNet UNet parameters. The analyses show that UNet has a high rate of metrics in the training progress. However, on the unseen dataset, Inception ResNet UNet extracts buildings more accurately (97.95% accuracy and 0.96 in the dice metric) in comparison with UNet (94.30% accuracy and 0.55 in the dice metric).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.